Sleeping sickness, also known as human African trypanosomiasis (HAT), is one of the most Neglected Tropical Diseases (NTDs) that has plagued human health in sub-Saharan Africa. In addition to HAT, wasting diseases in animals (known as animal African trypanosomiasis, AAT) are the primary reason for lack of agricultural development, adequate nutrition and economic prosperity in tsetse-infested areas. There are no vaccines and efficacious drugs for parasite control in the mammalian host. In contrast, control of the tsetse fly populations can break the disease cycle. In this renewal application Yale University scientists will continue to work with the Kenya Trypanosomiasis Research Center (TRC), World Health Organization designated Center of Excellence, to coordinate the capacity strengthening activities for HAT. TRC and Yale developed a strong program in Kenya and Uganda, which collaborates with Eastern Africa Network for Trypanosomes (EANETT), a consortium of the lead research institutions from Kenya, Uganda, Tanzania, Sudan and the recently co-opted institutions from Malawi, Angola and Congo where disease still prevails. The overall goal of this program is to strengthen the biomedical capacity in tsetse biology, and to acquire and implement the recent advances in applied vector genomics, genetics, bioinformatics and epidemiology in DEC research activities to enable and enhance the control/management tools and methods for HAT. It is now essential to continue the training activities that were initiated to ensure that the successes gained to date can be reinforced to achieve long-term sustainability of research programs working on tsetse biology and vector control in Africa. In this renewal application, we will continue to work to: 1) Develop biomedical expertise at TRC and their associates to address mechanisms of parasite transmission biology, genetics of vector competence, population biology and bioinformatics related to tsetse vectors and trypanosome parasites, as well as environmental and spatial analyses 2) Strengthen our collaborations with the laboratories in DECs affected by HAT and AAT to enable transfer of new technologies and tools relevant for control and to promote their integration into the on- going disease control programs to achieve sustainable control of HAT in the foreseeable future 3) Train a cadre of research experts/leaders who can address HAT epidemiology and vector control, and who will promote scientific evidence driven public health policy decisions in their country 4) Develop a community of researchers/mentors in DECs with strong knowledge in bioethics, good clinical and laboratory practice, biosafety, data management and research administration as well as strong publication skills and ethics

Public Health Relevance

Research is needed to develop effective responses to Sleeping Sickness in sub- Saharan Africa. This grant will allow US scientists to build partnerships with their counterparts in Kenya to train young and emerging scientists to conduct meaningful research in Human and animal African trypanosomiasis related to tsetse fly biology. The program described in this application contains a mix of long-, medium-, and short- term training that will enhance research capacity and promote translational activities to increase the public health impact of the research.

National Institute of Health (NIH)
Fogarty International Center (FIC)
International Research Training Grants (D43)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-IDM-U (56))
Program Officer
Sina, Barbara J
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Yale University
Public Health & Prev Medicine
Schools of Medicine
New Haven
United States
Zip Code
Gloria-Soria, Andrea; Dunn, W Augustine; Telleria, Erich L et al. (2016) Patterns of Genome-Wide Variation in Glossina fuscipes fuscipes Tsetse Flies from Uganda. G3 (Bethesda) 6:1573-84
Wachira, Benson M; Mireji, Paul O; Okoth, Sylvance et al. (2016) Responses of Glossina pallidipes and Glossina morsitans morsitans tsetse flies to analogues of δ-octalactone and selected blends. Acta Trop 160:53-7
Opiro, Robert; Saarman, Norah P; Echodu, Richard et al. (2016) Evidence of temporal stability in allelic and mitochondrial haplotype diversity in populations of Glossina fuscipes fuscipes (Diptera: Glossinidae) in northern Uganda. Parasit Vectors 9:258
Mbewe, Njelembo J; Mweempwa, Cornelius; Guya, Samuel et al. (2015) Microbiome frequency and their association with trypanosome infection in male Glossina morsitans centralis of Western Zambia. Vet Parasitol 211:93-8
Kato, Agapitus B; Hyseni, Chaz; Okedi, Loyce M et al. (2015) Mitochondrial DNA sequence divergence and diversity of Glossina fuscipes fuscipes in the Lake Victoria basin of Uganda: implications for control. Parasit Vectors 8:385
Echodu, Richard; Sistrom, Mark; Bateta, Rosemary et al. (2015) Genetic diversity and population structure of Trypanosoma brucei in Uganda: implications for the epidemiology of sleeping sickness and Nagana. PLoS Negl Trop Dis 9:e0003353
Aksoy, Emre; Telleria, Erich L; Echodu, Richard et al. (2014) Analysis of multiple tsetse fly populations in Uganda reveals limited diversity and species-specific gut microbiota. Appl Environ Microbiol 80:4301-12
Obiero, George F O; Mireji, Paul O; Nyanjom, Steven R G et al. (2014) Odorant and gustatory receptors in the tsetse fly Glossina morsitans morsitans. PLoS Negl Trop Dis 8:e2663
Masiga, Daniel; Obiero, George; Macharia, Rosaline et al. (2014) Chemosensory receptors in tsetse flies provide link between chemical and behavioural ecology. Trends Parasitol 30:426-8
Benoit, Joshua B; Hansen, Immo A; Attardo, Geoffrey M et al. (2014) Aquaporins are critical for provision of water during lactation and intrauterine progeny hydration to maintain tsetse fly reproductive success. PLoS Negl Trop Dis 8:e2517

Showing the most recent 10 out of 27 publications