I. Pioneer a new approach for drug target discovery that has implications for a broad range of developmental and chronic illnesses. II. Develop a robust technology platform for large-scale targeted genomic engineering to enable more complete recapitulation of human disease genotypes in animal models. We will enable precise introduction of combinations of disease-associated genetic mutations into a single animal model. III. Develop a technology for targeted epigenome modification to enable direct functional testing of causal links between specific epigenetic modifications and disease pathophysiology. IV. Identify fundamentally new classes of therapeutics for major depression.

Public Health Relevance

Major depressive disorder is a devastating mental illness affecting millions of Americans annually, with a large fraction of patients unresponsive to available therapies. The proposed project aims to identify fundamentally new classes of therapeutics by probing the epigenetic mechanisms contributing to major depression, through a combination of innovative technology development, and systematically establishing causal links between epigenetic targets and disease phenotype. The technologies developed through this proposal will establish a new epigenetic paradigm for drug discovery and have broad impacts for many fields of biomedical research including cancer, diabetes, obesity, and other neurological disorders. THE FOLLOWING RESUME SECTIONS WERE PREPARED BY THE SCIENTIFIC REVIEW OFFICER TO SUMMARIZE THE OUTCOME OF DISCUSSIONS OF THE REVIEW COMMITTEE ON THE FOLLOWING ISSUES. COMMITTEE BUDGET RECOMMENDATIONS: The budget was recommended as requested.

National Institute of Health (NIH)
National Institute of Mental Health (NIMH)
NIH Director’s Pioneer Award (NDPA) (DP1)
Project #
Application #
Study Section
Special Emphasis Panel (ZGM1-NDPA-A (01))
Program Officer
Beckel-Mitchener, Andrea C
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Broad Institute, Inc.
United States
Zip Code
Lee, Mark N; Ye, Chun; Villani, Alexandra-ChloƩ et al. (2014) Common genetic variants modulate pathogen-sensing responses in human dendritic cells. Science 343:1246980
Nishimasu, Hiroshi; Ran, F Ann; Hsu, Patrick D et al. (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156:935-49
Platt, Randall J; Chen, Sidi; Zhou, Yang et al. (2014) CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159:440-55
Cong, Le; Ran, F Ann; Cox, David et al. (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819-23
Ran, F Ann; Hsu, Patrick D; Lin, Chie-Yu et al. (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154:1380-9
Wang, Haoyi; Yang, Hui; Shivalila, Chikdu S et al. (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910-8
Konermann, Silvana; Brigham, Mark D; Trevino, Alexandro E et al. (2013) Optical control of mammalian endogenous transcription and epigenetic states. Nature 500:472-6
Ran, F Ann; Hsu, Patrick D; Wright, Jason et al. (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281-308