Early detection of cancer via screening has been shown to lead to improved survival for several common malignancies. However, screening comes with significant risks and expenses. One important issue faced by all screening tests is detecting as many cancers as possible while minimizing identification of false positives. False positive screening results induce anxiety in patients and their families, require additional expensive tests, and may result in harm if a follow-up study leads to a complication. We propose to develop a novel, genomic approach for cancer screening that leverages insights gained from high throughput re-sequencing of cancer genomes. We will develop this method in the context of lung cancer, since it is the number one cause of cancer deaths and since low dose computed tomography (CT) screening has recently been shown to produce significant survival benefits in high-risk patients. However, ~95% of positive screening results from low dose CT lung cancer screenings are false positives and so improvements are clearly needed. This proposal describes our plan to develop, optimize, and test our method. We will perform both pre-clinical and clinical evaluations and will test our approach in multiple settings, includig as a secondary screening procedure for differentiating between true positive and false positive screening results and as a primary screening modality. Importantly, the method is readily extendable to any cancer for which high throughout sequencing data are available and we envision ultimately being able to screen for most common cancers using a single assay.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
NIH Director’s New Innovator Awards (DP2)
Project #
1DP2CA186569-01
Application #
8572632
Study Section
Special Emphasis Panel (ZRG1-MOSS-C (56))
Program Officer
Mietz, Judy
Project Start
2013-09-30
Project End
2018-08-31
Budget Start
2013-09-30
Budget End
2018-08-31
Support Year
1
Fiscal Year
2013
Total Cost
$2,407,500
Indirect Cost
$907,500
Name
Stanford University
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Przybyl, Joanna; Chabon, Jacob J; Spans, Lien et al. (2018) Combination Approach for Detecting Different Types of Alterations in Circulating Tumor DNA in Leiomyosarcoma. Clin Cancer Res 24:2688-2699
Dudley, Jonathan C; Schroers-Martin, Joseph; Lazzareschi, Daniel V et al. (2018) Detection and surveillance of bladder cancer using urine tumor DNA. Cancer Discov :
Kurtz, David M; Scherer, Florian; Jin, Michael C et al. (2018) Circulating Tumor DNA Measurements As Early Outcome Predictors in Diffuse Large B-Cell Lymphoma. J Clin Oncol 36:2845-2853
Jeong, Youngtae; Hoang, Ngoc T; Lovejoy, Alexander et al. (2017) Role of KEAP1/NRF2 and TP53 Mutations in Lung Squamous Cell Carcinoma Development and Radiation Resistance. Cancer Discov 7:86-101
Chaudhuri, Aadel A; Chabon, Jacob J; Lovejoy, Alexander F et al. (2017) Early Detection of Molecular Residual Disease in Localized Lung Cancer by Circulating Tumor DNA Profiling. Cancer Discov 7:1394-1403
Newman, Aaron M; Lovejoy, Alexander F; Klass, Daniel M et al. (2016) Integrated digital error suppression for improved detection of circulating tumor DNA. Nat Biotechnol 34:547-555
Jeong, Youngtae; Rhee, Horace; Martin, Shanique et al. (2016) Identification and genetic manipulation of human and mouse oesophageal stem cells. Gut 65:1077-86
Scherer, Florian; Kurtz, David M; Newman, Aaron M et al. (2016) Distinct biological subtypes and patterns of genome evolution in lymphoma revealed by circulating tumor DNA. Sci Transl Med 8:364ra155
Aguilera, Todd A; Rafat, Marjan; Castellini, Laura et al. (2016) Reprogramming the immunological microenvironment through radiation and targeting Axl. Nat Commun 7:13898
Chabon, Jacob J; Simmons, Andrew D; Lovejoy, Alexander F et al. (2016) Circulating tumour DNA profiling reveals heterogeneity of EGFR inhibitor resistance mechanisms in lung cancer patients. Nat Commun 7:11815

Showing the most recent 10 out of 17 publications