The study of the factors that control RNA expression to give rise to diverse cell types, from the same genome, has occupied scientists for more than 50 years. However, transcriptional regulation is just the beginning. Each expressed RNA can potentially adopt a new purpose as a function of its spatial position within a cell. RNA localization has been analyzed one RNA at a time because assaying RNA spatial organization on a systems-level is currently not possible. This Innovator proposal is focused on developing the methods to produce the first ever view of RNA localization on a transcriptome-wide level within cells. We will develop a novel methodology to seek and find the cellular localization of every RNA within specific cellular locations. These methods are designed to be applicable to any cell type. By merging our technology with RNA sequencing we will construct RNA Localization Heatmaps to identify sites where certain RNAs are localized to. We will then integrate our data with existing datasets to understand how RNA-binding proteins direct RNAs to their cellular destinations. Our ultimate goal is to not only find where RNAs are, but also how they get there. Deciphering the molecular code for RNA organization will have broad impact on the biomedical community. Such knowledge could be used to better understand RNA-guided cellular reprogramming, design better RNA therapeutics, and further our understanding of how RNA localization contributes to normal and diseased phenotypes. This proposal is highly suitable for the New Innovator Award mechanism. Planned experiments will develop novel tools and methods to radically transform our understanding of cellular and RNA organization, while at the same time discovering an extended set of molecular codes that researchers could employ for RNA design.

Public Health Relevance

RNA localization is a hallmark of essentially every biological process: from development to the onset of cancer. However, a comprehensive understanding of RNA localization is presently lacking. Understanding the breadth of RNA localization and how RNA spatial organization and function is controlled would dramatically increase our understanding of how it controls biology and disease, and potentially lead to optimized design of RNA-based therapies.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
NIH Director’s New Innovator Awards (DP2)
Project #
Application #
Study Section
Special Emphasis Panel ()
Program Officer
Ainsztein, Alexandra M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Irvine
Schools of Pharmacy
United States
Zip Code
Chan, Dalen; Spitale, Robert C (2017) Defining Functional Structured RNA inside Living Cells. Biochemistry 56:5847-5848
Feng, C; Li, Y; Spitale, R C (2017) Photo-controlled cell-specific metabolic labeling of RNA. Org Biomol Chem 15:5117-5120
Chan, Dalen; Feng, Chao; Spitale, Robert C (2017) Measuring RNA structure transcriptome-wide with icSHAPE. Methods 120:85-90
Abdelsayed, Michael M; Ho, Bao T; Vu, Michael M K et al. (2017) Multiplex Aptamer Discovery through Apta-Seq and Its Application to ATP Aptamers Derived from Human-Genomic SELEX. ACS Chem Biol 12:2149-2156
Nainar, Sarah; Beasley, Samantha; Fazio, Michael et al. (2016) Metabolic Incorporation of Azide Functionality into Cellular RNA. Chembiochem 17:2149-2152
Nainar, Sarah; Marshall, Paul R; Tyler, Christina R et al. (2016) Evolving insights into RNA modifications and their functional diversity in the brain. Nat Neurosci 19:1292-8
Nainar, Sarah; Feng, Chao; Spitale, Robert C (2016) Chemical Tools for Dissecting the Role of lncRNAs in Epigenetic Regulation. ACS Chem Biol 11:2091-100
Kubota, Miles; Tran, Catherine; Spitale, Robert C (2015) Progress and challenges for chemical probing of RNA structure inside living cells. Nat Chem Biol 11:933-41