Abstract: A bacterial cell is much more than the sum of its parts. Most cellular functions are critically impacted not only by regulation of the genome and proteome, but also by the shape of the cell and how the shape dictates the localization of intracellular components. The ability to systematically manipulate cell shape will ultimately provide a powerful suite of applications in antibiotic drug development, synthetic biology, and biosensing. My laboratory will leverage insight from evolutionary, synthetic, and cell biological approaches to inform our ongoing development of quantitative, biophysical models of bacterial cell shape determination and growth. We have already successfully used modeling to predict the cell shape response to antibiotic treatment. We will focus our efforts on exploiting other predictions generated from quantitative models to reengineer cell shape and redesign the intracellular localization landscape. For the period of this award, three design targets will be pursued that leverage our expertise in biophysical modeling of cell shape to probe key features of cell growth: 1) We will explore the evolutionary origins of cell shape determination by transplanting foreign cytoskeletal elements between closely related bacteria. 2) We will program specific intracellular organizational phenotypes to dynamically reengineer cell shape. 3) We will determine the tension sensitivity of the growth machinery to elucidate potential feedback mechanisms for cell shape maintenance. These targets will strategically expand the experimental focus of my laboratory. Success will address many longstanding questions of how cells determine their shape and how they utilize shape to regulate complex intracellular processes such as cell division. The physical principles of organization are likely to appear in diverse biological contexts, in both bacterial cells and in higher organisms. Ultimately, we will challenge our understanding of cell shape determination by transforming shape into an experimentally tunable parameter. Public Health Relevance: Cell shape and intracellular organization have been recognized to play a critical role in a wide variety of important bacterial functions. We intend to systematically engineer cell shape to elucidate and exploit the links between shape, function, and fitness. Our work will produce tools for altering shape and organization with potential applications in biosensing, control of pathogenesis, and nanotechnology.

Agency
National Institute of Health (NIH)
Institute
Office of The Director, National Institutes of Health (OD)
Type
NIH Director’s New Innovator Awards (DP2)
Project #
1DP2OD006466-01
Application #
7849134
Study Section
Special Emphasis Panel (ZGM1-NDIA-O (02))
Program Officer
Basavappa, Ravi
Project Start
2009-09-30
Project End
2014-06-30
Budget Start
2009-09-30
Budget End
2014-06-30
Support Year
1
Fiscal Year
2009
Total Cost
$2,400,000
Indirect Cost
Name
Stanford University
Department
Biomedical Engineering
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Shi, Handuo; Bratton, Benjamin P; Gitai, Zemer et al. (2018) How to Build a Bacterial Cell: MreB as the Foreman of E. coli Construction. Cell 172:1294-1305
Colavin, Alexandre; Shi, Handuo; Huang, Kerwyn Casey (2018) RodZ modulates geometric localization of the bacterial actin MreB to regulate cell shape. Nat Commun 9:1280
Rojas, Enrique R; Billings, Gabriel; Odermatt, Pascal D et al. (2018) The outer membrane is an essential load-bearing element in Gram-negative bacteria. Nature 559:617-621
Rojas, Enrique R; Huang, Kerwyn Casey; Theriot, Julie A (2017) Homeostatic Cell Growth Is Accomplished Mechanically through Membrane Tension Inhibition of Cell-Wall Synthesis. Cell Syst 5:578-590.e6
Yang, Xinxing; Lyu, Zhixin; Miguel, Amanda et al. (2017) GTPase activity-coupled treadmilling of the bacterial tubulin FtsZ organizes septal cell wall synthesis. Science 355:744-747
Shi, Handuo; Colavin, Alexandre; Lee, Timothy K et al. (2017) Strain Library Imaging Protocol for high-throughput, automated single-cell microscopy of large bacterial collections arrayed on multiwell plates. Nat Protoc 12:429-438
Ursell, Tristan; Lee, Timothy K; Shiomi, Daisuke et al. (2017) Rapid, precise quantification of bacterial cellular dimensions across a genomic-scale knockout library. BMC Biol 15:17
Bartlett, Thomas M; Bratton, Benjamin P; Duvshani, Amit et al. (2017) A Periplasmic Polymer Curves Vibrio cholerae and Promotes Pathogenesis. Cell 168:172-185.e15
Peters, Jason M; Colavin, Alexandre; Shi, Handuo et al. (2016) A Comprehensive, CRISPR-based Functional Analysis of Essential Genes in Bacteria. Cell 165:1493-1506
Pereira, Ana R; Hsin, Jen; Król, Ewa et al. (2016) FtsZ-Dependent Elongation of a Coccoid Bacterium. MBio 7:

Showing the most recent 10 out of 50 publications