Abstract: Trauma, stroke, and neurodegenerative disease result in neuronal loss, which leads to morbidity and mortality. A major advancement to mitigate these conditions would be to harness the ability to regenerate lost neurons. Although neural stem cells (NSCs) and neurogenesis normally exist in adult brain, the scarcity and restricted localization render them inadequate for regeneration. Cell transplantation is currently the strategy of choice to deliver new neuronal cells, but this approach is inefficient and cumbersome due to limited cell survival and poor integration into the functional neural networks following transplantation. In a highly novel approach to adult neurogenesis studies based on recent findings, we hypothesize that endogenous glial cells can be directly converted into neurogenic NSCs so that de novo-generated neurons will repopulate damaged brain regions. This hypothesis is based on our extensive studies using an essential nuclear receptor for NSCs and on the recent advancement of induced pluripotent stem (iPS) cells. We previously revealed that nuclear receptor TLX is not only essential for adult neurogenesis but is also sufficient to convert differentiated astrocytes into NSCs in culture. Although somatic cells from various tissues can be reprogrammed to iPS cells, it is not clear whether somatic cells can also be directly induced to form NSCs and neurons. Through transcriptional reprogramming, we propose to convert astrocytes and microglia, the two most proliferative glia cells during CNS damage, into NSCs and neurons. Using regulated expression of TLX in cultured cells and in transgenic mice, we will induce astrocytes to become proliferative, multipotent NSCs and then differentiate them into neurons. In addition, by using combinations of transcription factors, we will directly reprogram astrocytes or microglia to NSCs in cell culture and in adult mouse brains. Our long-term goal is to repopulate the damaged CNS regions using the patient's endogenous non-neuronal cells. Public Health Relevance: Trauma, stroke or degeneration can result in permanent damage to the central nervous system (CNS), which leads to disability and mortality. Currently, care and treatment of patients with CNS injury are demanding and extremely expensive. Our proposed research focuses on adult neurogenesis and takes an innovative approach to induce the production of new neurons in the adult CNS, with the ultimate goal of repairing the function of damaged CNS using endogenous cells from patients. Thus, our research is highly relevant and significant to public health.

Agency
National Institute of Health (NIH)
Institute
Office of The Director, National Institutes of Health (OD)
Type
NIH Director’s New Innovator Awards (DP2)
Project #
1DP2OD006484-01
Application #
7849411
Study Section
Special Emphasis Panel (ZGM1-NDIA-O (02))
Program Officer
Basavappa, Ravi
Project Start
2009-09-30
Project End
2014-06-30
Budget Start
2009-09-30
Budget End
2014-06-30
Support Year
1
Fiscal Year
2009
Total Cost
$2,355,000
Indirect Cost
Name
University of Texas Sw Medical Center Dallas
Department
Biochemistry
Type
Schools of Medicine
DUNS #
800771545
City
Dallas
State
TX
Country
United States
Zip Code
75390
Niu, Wenze; Zang, Tong; Wang, Lei-Lei et al. (2018) Phenotypic Reprogramming of Striatal Neurons into Dopaminergic Neuron-like Cells in the Adult Mouse Brain. Stem Cell Reports 11:1156-1170
Wang, Lei-Lei; Zhang, Chun-Li (2018) Engineering new neurons: in vivo reprogramming in mammalian brain and spinal cord. Cell Tissue Res 371:201-212
Tang, Yu; Liu, Meng-Lu; Zang, Tong et al. (2017) Direct Reprogramming Rather than iPSC-Based Reprogramming Maintains Aging Hallmarks in Human Motor Neurons. Front Mol Neurosci 10:359
Smith, Derek K; Yang, Jianjing; Liu, Meng-Lu et al. (2016) Small Molecules Modulate Chromatin Accessibility to Promote NEUROG2-Mediated Fibroblast-to-Neuron Reprogramming. Stem Cell Reports 7:955-969
Wang, Lei-Lei; Su, Zhida; Tai, Wenjiao et al. (2016) The p53 Pathway Controls SOX2-Mediated Reprogramming in the Adult Mouse Spinal Cord. Cell Rep 17:891-903
Islam, Mohammed M; Smith, Derek K; Niu, Wenze et al. (2015) Enhancer Analysis Unveils Genetic Interactions between TLX and SOX2 in Neural Stem Cells and In Vivo Reprogramming. Stem Cell Reports 5:805-815
Beckervordersandforth, Ruth; Zhang, Chun-Li; Lie, Dieter Chichung (2015) Transcription-Factor-Dependent Control of Adult Hippocampal Neurogenesis. Cold Spring Harb Perspect Biol 7:a018879
Islam, Mohammed M; Zhang, Chun-Li (2015) TLX: A master regulator for neural stem cell maintenance and neurogenesis. Biochim Biophys Acta 1849:210-6
Qin, Song; Niu, Wenze; Iqbal, Nida et al. (2014) Orphan nuclear receptor TLX regulates astrogenesis by modulating BMP signaling. Front Neurosci 8:74
Su, Zhida; Niu, Wenze; Liu, Meng-Lu et al. (2014) In vivo conversion of astrocytes to neurons in the injured adult spinal cord. Nat Commun 5:3338

Showing the most recent 10 out of 19 publications