The goals of this proposal are to define the mechanistic link between obesity, hormone silencing of the tumor suppressor GUCY2C, and colorectal cancer risk;the reversibility of this link;and the utility of oral GUCY2C hormone replacement to mitigate that risk. GUCY2C is the intestinal receptor for the paracrine hormone guanylin in the colorectum, the most commonly lost gene product in sporadic colorectal cancer in mice and humans. GUCY2C regulates intestinal homeostasis, and its silencing by paracrine hormone loss produces epithelial dysfunction characterized by hyperproliferation, increased DNA damage, and reprogramming of cell metabolism, increasing intestinal tumorigenesis. Unexpectedly, preliminary studies revealed that guanylin expression in colon is eliminated by obesity in mice and humans. Guanylin expression appears to be reversibly modulated by ingested calories, rather than by the endocrine, adipokine or inflammatory milieu associated with obesity. These observations suggest a model of cancer risk in which ingested calories contributing to obesity recapitulate established mechanisms underlying sporadic colorectal cancer, by suppressing guanylin expression, silencing the GUCY2C tumor suppressor and disrupting epithelial homeostasis, increasing tumorigenesis. In the present proposal, the first aim will test the hypothesis that obesity induces epithelial dysfunction and tumorigenesis by suppressing guanylin expression and silencing GUCY2C. These studies will establish suppression of guanylin expression as a critical mechanistic link between diet, obesity, and cancer risk.
The second aim will define the contribution of reversible calorie- dependent modulation of guanylin expression to epithelial dysfunction in obesity. These studies will expand the current paradigm of cancer risk beyond obesity and its associated endocrine milieu, to include the role of ingested calories as a reversible risk factor linking obesity and cancer. Finally, the third aim will explore the utility of oral GUCY2C ligand supplementation to prevent obesity-induced epithelial dysfunction and colorectal cancer. These studies will establish the utility of oral GUCY2C ligand replacement as a chemopreventive strategy to mitigate obesity-related cancer risk. Together, these studies will define one concrete mechanism linking obesity to cancer, serving as a bridge between identification of risk factors (obesity, diet, ingested calories) and the molecular biology of cancer development through silencing of the GUCY2C tumor suppressor. Understanding these mechanisms underlying cancer risk posed by obesity will provide new strategies for countering these risks, including calorie restriction and oral hormone replacement. The potential for immediate translation of these results to mitigate colorectal cancer risk in obese patients can be appreciated in the context of the recent regulatory approval of oral GUCY2C ligands to treat constipation.

Public Health Relevance

Colorectal cancer is the second leading cause of cancer death in the U.S., and its incidence has a strong epidemiological link to obesity. Here we explore the relationship between obesity, cancer, and hormones regulating the intestinal tumor suppressor GUCY2C. We propose that obesity increases colorectal cancer risk by suppressing the expression of those hormones and silencing GUCY2C, an effect which can be reversed by dietary calorie restriction or oral GUCY2C hormone replacement therapy.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Individual Predoctoral NRSA for M.D./Ph.D. Fellowships (ADAMHA) (F30)
Project #
1F30CA180500-01
Application #
8593720
Study Section
Special Emphasis Panel (ZRG1-F09B-P (20))
Program Officer
Damico, Mark W
Project Start
2013-07-01
Project End
2016-06-30
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
1
Fiscal Year
2013
Total Cost
$42,910
Indirect Cost
Name
Thomas Jefferson University
Department
Pharmacology
Type
Schools of Medicine
DUNS #
053284659
City
Philadelphia
State
PA
Country
United States
Zip Code
19107
Witek, Matthew E; Snook, Adam E; Lin, Jieru E et al. (2014) A novel CDX2 isoform regulates alternative splicing. PLoS One 9:e104293
Witek, Matthew; Blomain, Erik S; Magee, Michael S et al. (2014) Tumor radiation therapy creates therapeutic vaccine responses to the colorectal cancer antigen GUCY2C. Int J Radiat Oncol Biol Phys 88:1188-95
Kim, G W; Lin, J E; Blomain, E S et al. (2014) Antiobesity pharmacotherapy: new drugs and emerging targets. Clin Pharmacol Ther 95:53-66
Blomain, Erik S; Lin, Jieru E; Kraft, Crystal L et al. (2013) Translating colorectal cancer prevention through the guanylyl cyclase C signaling axis. Expert Rev Clin Pharmacol 6:557-64