Nonmelanoma skin cancer (NMSC) is the most prevalent cancer worldwide, with over 1 million new cases diagnosed each year in the US alone. Human skin is constantly exposed to UV light causing DNA damage that contributes to skin aging and the development of skin cancer. Apoptosis is essential to eliminate damaged skin cells harboring oncogenic mutations;however, keratinocytes have evolved protective mechanisms against apoptosis. These mechanisms act to preserve cellular homeostasis and epidermal integrity but can also act as a pathway for skin cells to progress to NMSC. Mammalian target of rapamycin (mTOR) signaling is activated in the epidermis by UVB, and is known to activate cell proliferation and pro- survival signaling cascades. Studies suggest that mTOR might be a useful therapeutic target in NMSC. However, a better understanding of mTOR's role in epidermal cells in response to UVB is needed and may lead to the identification of new targets to prevent NMSC. We hypothesize that selectively inhibiting mTOR will increase the sensitivity of keratinocytes to UVB-induced apoptosis and prevent the clonal expansion of initiated cells, thus inhibiting skin tumorigenesis. The proposed experiments will use the pharmacological inhibitor rapamycin and a genetic ablation technique to block mTOR signaling in keratinocytes and will examine the in vitro and in vivo responses to UVB exposure. If our hypothesis is substantiated at the completion of this project, we will establish mTOR as a critical regulator of epidermal homeostasis and an attractive chemo preventative target in NMSC.

Public Health Relevance

Nonmelanoma skin cancer (NMSC) is the most common cancer worldwide and the increasing rates of NMSC are associated with increased sun exposure.
This research aims to better understand the function of the protein mTOR within skin cells. mTOR is activated by sun exposure, and we believe mTOR contributes to the development of skin cancer. Our research will investigate mTOR as a possible target for the prevention of skin cancer.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Individual Predoctoral NRSA for M.D./Ph.D. Fellowships (ADAMHA) (F30)
Project #
5F30ES019809-03
Application #
8416891
Study Section
Special Emphasis Panel (ZRG1-F09-E (20))
Program Officer
Humble, Michael C
Project Start
2011-02-01
Project End
2015-07-31
Budget Start
2013-02-01
Budget End
2014-01-31
Support Year
3
Fiscal Year
2013
Total Cost
$27,141
Indirect Cost
Name
Pennsylvania State University
Department
Physiology
Type
Schools of Medicine
DUNS #
129348186
City
Hershey
State
PA
Country
United States
Zip Code
17033
Carr, Theresa D; Feehan, Robert P; Hall, Michael N et al. (2015) Conditional disruption of rictor demonstrates a direct requirement for mTORC2 in skin tumor development and continued growth of established tumors. Carcinogenesis 36:487-97
Origanti, Sofia; Nowotarski, Shannon L; Carr, Theresa D et al. (2012) Ornithine decarboxylase mRNA is stabilized in an mTORC1-dependent manner in Ras-transformed cells. Biochem J 442:199-207
Carr, Theresa D; DiGiovanni, John; Lynch, Christopher J et al. (2012) Inhibition of mTOR suppresses UVB-induced keratinocyte proliferation and survival. Cancer Prev Res (Phila) 5:1394-404