Abnormal serotonin (5-HT) signaling in the brain has been implicated in the pathogenesis of many devastating and highly prevalent psychiatric disorders, the majority of which manifest in adolescence and young adulthood. While 5-HT modulating antidepressants help many patients, a significant percentage of patients suffer due to relapse, resistance, side effects, and lack of response. Significantly, the details of how alterations in 5-HT signaling affect behavior and when those alterations occur are still unresolved, impeding the development of more specific and effective treatments. In part, this is due to a lack of specificity and consistency in traditional pharmacological techniques used to alter the 5-HT system in animal models. More recently, many studies have employed genetic approaches to target transcription factors required for fetal 5-HT neuron development and function, revealing significant behavioral deficits. While those models exhibited significant 5-HT deficiencies, they also affected many other serotonergic functions not related to 5-HT synthesis. Since the recent discovery of the sequence of tryptophan hydroxylase 2 (Tph2), the sole rate- limiting enzyme in brain 5-HT synthesis, knockout studies have shown that embryonic 5-HT deficiencies can cause behavioral abnormalities. Still, it is not yet clear if maintenance of postnatal 5-HT levels is critical for normal behavior. Additionally, stress is a major environmenta factor in many 5-HT-related disorders, and studies have suggested that disruption of 5-HT-mediated regulation of the hypothathlamic-pituitary-adrenal (HPA) axis may be involved. However, fundamental questions about how the 5-HT system and the HPA axis interact remain unanswered. To address these fundamental questions, we have developed a novel genetic tool that specifically decreases brain 5-HT synthesis at precise time points. We have generated mice that express a tamoxifen (TM)-inducible CreER, ePet:CreERT2ascend, in ascending 5-HT neurons, which project to forebrain circuitry involved in emotional behaviors. I have crossed this driver with Tph2fl/? mice to create Tph2 inducible conditional knockout (Tph2CKO) mice. Exciting pilot data in my initial studies demonstrate that TM treatment of Tph2CKO mice results in knockout of Tph2 expression and 5-HT synthesis in ~50% of ascending 5-HT neurons, providing a naturalistic deficit that will better model human disorders. In TM-treated Tph2CKO mice, molecular techniques will be used to quantify the level of 5-HT and serotonergic gene expression. I will also investigate the effect of postnatal 5-HT deficiency on two post-synaptic mechanisms involved in 5-HT-related behaviors, glycogen synthase kinase-? (GSK3 ?) signaling and glucocorticoid receptor expression. Following TM treatment during adolescence, stressed and unstressed Tph2CKO mice will be evaluated for changes in anxiety like behaviors, fear conditioning, and inter-male aggression. This study will take advantage of my innovative approaches to determine the importance, specifically, of postnatal 5-HT in behaviors that are relevant to many stress-related mental health disorders.

Public Health Relevance

While decreased serotonin (5-HT) signaling in the brain has been implicated in many prevalent, devastating stress-related psychiatric disorders, exactly how and when 5-HT signaling is altered in these disorders is still unknown, impeding the development of more specific and effective treatments. This study will use a new genetic approach to specifically decrease brain 5-HT levels in adolescent mice, and the mice will be evaluated using a variety of behavioral tests relevant to human stress-related disorders. This will help to determine if adolescent decreases in 5-HT levels result in abnormal behaviors and responses to stress, providing information critical for defining when 5-HT is needed for normal emotional health.

National Institute of Health (NIH)
National Institute of Mental Health (NIMH)
Individual Predoctoral NRSA for M.D./Ph.D. Fellowships (ADAMHA) (F30)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Driscoll, Jamie
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Case Western Reserve University
Schools of Medicine
United States
Zip Code
Carlson, Kaitlin S; Whitney, Meredith S; Gadziola, Marie A et al. (2016) Preservation of Essential Odor-Guided Behaviors and Odor-Based Reversal Learning after Targeting Adult Brain Serotonin Synthesis. eNeuro 3:
Whitney, Meredith Sorenson; Shemery, Ashley M; Yaw, Alexandra M et al. (2016) Adult Brain Serotonin Deficiency Causes Hyperactivity, Circadian Disruption, and Elimination of Siestas. J Neurosci 36:9828-42