Methamphetamine (METH) is a highly addictive psychomotorstimulant. Repeated administration of METH elicits neuroadaptations that last long after drug-taking ceases. These adaptations contribute to compulsive drug-seeking and relapse in the withdrawn addict, phenomena that are particularly compelling when the addict is faced with people, places or things that were associated with their drug use. The purpose of this project is to investigate 5-HT2 receptors (5-HT2R) and an associated signaling protein, GSKSbeta, as possible new medication targets for METH abuse. METH-induced conditioned place preference (CPP) in rats will be used to efficiently model aspects of human drug use. As addiction therapy will need to be effective after one becomes addicted, we plan to evaluate the treatment targets in rats already expressing METH-induced CPP. We provide Preliminary Data where METH-conditioning can be reversed with mirtazapine, an antidepressant with high affinity for 5-HT2 receptors. The overall hypothesis for this grant is that 5-HT2 antagonists will disrupt the maintenance of the drug-reward memory and will compensate and/or reverse the neuroadaptations elicited in METH-conditioned rats. Three hypothesis-driven Specific Aims are proposed.
Aim I Hypothesis: Systemic administration of 5-HT2R antagonists, and/or an inhibitor of GSKSbeta, to METH-conditioned rats will dose-dependently attenuate subsequent preference for the METH- paired context.
Aim II Hypothesis: Attenuation of persistent METH-induced CPP will correlate with increased surface expression of AMPA receptors and levels of GSKSbeta phosphorylated at the serine 9 position. We will use a novel cross-linking assay to determine changes in AMPA receptor trafficking and immunoblot procedures to detect the phosphorylation state of GSKSbeta.
Aim III Hypothesis: METH- conditioned rats will enhance AMPA-mediated excitability of neurons in those regions where AMPAR surface expression was elevated (determined in Aim II). This will be assessed by whole-cell patch clamp electrophysiology. Using a rodent model of human addiction provides opportunity to engage in translational research that will expand our understanding of the molecular mechanisms underlying METH addiction, and suggest a novel addiction treatment strategy. This NRSA grant will also allow the applicant exciting new training opportunities in the neuroscience of addiction. In summary, METH abuse is a serious problem in the United States, with no current effective treatment programs. The goal of this proposal is to help identify potential """"""""anti-addiction"""""""" medications that will support recovery from METH addiction.

National Institute of Health (NIH)
National Institute on Drug Abuse (NIDA)
Predoctoral Individual National Research Service Award (F31)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-F02A-X (20))
Program Officer
Babecki, Beth
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Rush University Medical Center
Schools of Medicine
United States
Zip Code
Mata, Mariana M; Napier, T Celeste; Graves, Steven M et al. (2015) Methamphetamine decreases CD4 T cell frequency and alters pro-inflammatory cytokine production in a model of drug abuse. Eur J Pharmacol 752:26-33
Root, David H; Melendez, Roberto I; Zaborszky, Laszlo et al. (2015) The ventral pallidum: Subregion-specific functional anatomy and roles in motivated behaviors. Prog Neurobiol 130:29-70
Graves, Steven M; Clark, Mary J; Traynor, John R et al. (2015) Nucleus accumbens shell excitability is decreased by methamphetamine self-administration and increased by 5-HT2C receptor inverse agonism and agonism. Neuropharmacology 89:113-21
Napier, T Celeste; Herrold, Amy A; de Wit, Harriet (2013) Using conditioned place preference to identify relapse prevention medications. Neurosci Biobehav Rev 37:2081-6
Graves, Steven M; Viskniskki, Annika A; Cunningham, Kathryn A et al. (2013) Serotonin(2C) receptors in the ventral pallidum regulate motor function in rats. Neuroreport 24:605-8
Graves, Steven M; Persons, Amanda L; Riddle, Jennifer L et al. (2012) The atypical antidepressant mirtazapine attenuates expression of morphine-induced place preference and motor sensitization. Brain Res 1472:45-53
Graves, Steven M; Rafeyan, Roueen; Watts, Jeffrey et al. (2012) Mirtazapine, and mirtazapine-like compounds as possible pharmacotherapy for substance abuse disorders: evidence from the bench and the bedside. Pharmacol Ther 136:343-53
Graves, Steven M; Napier, T Celeste (2012) SB 206553, a putative 5-HT2C inverse agonist, attenuates methamphetamine-seeking in rats. BMC Neurosci 13:65
Graves, Steven M; Napier, T Celeste (2011) Mirtazapine alters cue-associated methamphetamine seeking in rats. Biol Psychiatry 69:275-81
Kousik, Sharanya M; Graves, Steven M; Napier, T Celeste et al. (2011) Methamphetamine-induced vascular changes lead to striatal hypoxia and dopamine reduction. Neuroreport 22:923-8