The molecular targets for vitreoretinopathy and uveitis (intraocular inflammation) are poorly understood. This proposal builds on our exciting discovery of a calcium-activated protease, CAPN5 (calpain-5), as the cause of Autosomal Dominant Neovascular Inflammatory Vitreoretinopathy (ADNIV), and that CAPN5 processes PDGFB signaling. CAPN5 is the first nonsyndromic uveitis gene, and makes possible a highly innovative molecular-genetic approach for mechanism-based therapies for inflammation induced by photoreceptor degeneration. Photoreceptors express CAPN5, and an hCAPN5-R243L gain of function mutation in mice shows all the phenotypes of human ADNIV disease. The retina photoreceptors might be particularly sensitive to mutations in CAPN5, because high intracellular calcium is necessary and sufficient to regulate dark adaptation in photoreceptors. Our long-term goals are to find better and more specific treatments for inflammatory vitreoretinopathy. Our objective is to use in vitro and in vivo cell culture and mouse models to determine the mechanisms responsible for controlling activity of CAPN5. We will also investigate how uncontrolled CAPN5 activity leads to aberrant signaling of one of its substrates, platelet-derived growth factor B (PDGFB), and how this signaling results in the subsequent ADNIV phenotypes. Our central hypothesis is that an uncontrolled, calcium-activated CAPN5 pathway leads to ADNIV retinal degeneration and uveitis through aberrant PDGFB signaling. By creating a new mouse model we will be able to identify new therapeutic targets.
Our specific aims are to (1) Dissect the ADNIV CAPN5 autoproteolysis effect in cells, (2) Determine if ADNIV CAPN5 hyperactively cleaves PDGFB to upregulate signaling, and (3) Test if PDGFB loss rescues the ADNIV phenotype in a preclinical mouse model. Impact. We expect to gain not only a better understanding of calpain activity and the role PDGFB plays in eye disease, but also to identify new therapeutic targets that may be applicable to many eye diseases. Our work should help determine the role of PDGFB signaling in ADNIV and other vitreoretinal degenerative diseases.

Public Health Relevance

ADNIV is an inherited eye disease caused by gain of function mutations in CAPN5 that cause vitreoretinal degeneration and uveitis. Studies of CAPN5 and its substrate, PDGFB, will help us determine novel therapeutic approaches to treat blinding diseases caused by inflammatory and angiogenic retinal degeneration.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Predoctoral Individual National Research Service Award (F31)
Project #
1F31EY026789-01
Application #
9123760
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Agarwal, Neeraj
Project Start
2016-04-06
Project End
2021-04-05
Budget Start
2016-04-06
Budget End
2017-04-05
Support Year
1
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of Iowa
Department
Ophthalmology
Type
Schools of Medicine
DUNS #
062761671
City
Iowa City
State
IA
Country
United States
Zip Code
52246
Cho, Galaxy Y; Abdulla, Yazeed; Sengillo, Jesse D et al. (2017) CRISPR-mediated Ophthalmic Genome Surgery. Curr Ophthalmol Rep 5:199-206
Toral, Marcus A; Velez, Gabriel; Boudreault, Katherine et al. (2017) Structural modeling of a novel SLC38A8 mutation that causes foveal hypoplasia. Mol Genet Genomic Med 5:202-209
Schaefer, Kellie A; Wu, Wen-Hsuan; Colgan, Diana F et al. (2017) Unexpected mutations after CRISPR-Cas9 editing in vivo. Nat Methods 14:547-548
Schaefer, Kellie; Mahajan, MaryAnn; Gore, Anuradha et al. (2017) Calpain-5 gene expression in the mouse eye and brain. BMC Res Notes 10:602
Schaefer, Kellie A; Toral, Marcus A; Velez, Gabriel et al. (2016) Calpain-5 Expression in the Retina Localizes to Photoreceptor Synapses. Invest Ophthalmol Vis Sci 57:2509-21