Accumulating evidence implicates a role for protein synthesis in the formation of long-term memories and a loss of translational control with disorders characterized by cognitive dysfunction, such as fragile X syndrome and autism. Little, however, is known about how mRNA translation is regulated at synapses. The proposed experiments will define a role for S6 phosphorylation in regulating local protein synthesis using a model system that selectively activates the perforant path projections to the hippocampus. These experiments will identify patterns of synaptic activity that are most effective and define signal transduction pathways that activate mTOR-dependent protein synthesis. Our preliminary studies reveal that unilateral high frequency stimulation of the perforant path strongly activates phosphorylation of S6 in granule cells of the dentate gyrus and in the portion of the dendrites contacted by active synapses suggesting a role for S6 phosphorylation in regulating activity-dependent protein synthesis. The central hypothesis is that S6 phosphorylation acts as a signal to initiate translation of activity-dependent proteins at activated synapses. To understand the role of S6 phosphorylation in regulating translation this project aims to: 1) determine specific patterns of activity that optimally activate phosphorylation of S6, 2) define signaling pathways involved in regulating phosphorylation of S6, and 3) determine if induction of S6 phosphorylation increases mTOR-dependent protein synthesis in cell bodies, dendrites or both. Localization of S6 phosphorylation will be assessed using immunofluorescence techniques and 2-photon laser scanning imaging. Critical signaling cascades will be defined using pharmacological techniques. Levels of protein synthesis will be assessed by pulse labeling and film autoradiography. Understanding how translation of new proteins is regulated at active synapses may provide novel insights on mechanisms involved in activity-dependent synaptic modifications and on disorders involving disruptions of synaptic protein synthesis. These studies may also serve to inform subsequent analyses where physiological stimulation may be used to activate mTOR-dependent protein synthesis in cortical motor neurons to enable regeneration of axons after spinal cord injury.

Public Health Relevance

The ultimate goal of this research is to define a role for S6 phosphorylation in regulating local protein synthesis by identifying physiological stimulation paradigms and defining signal transduction pathways that activate phosphorylation of S6 and test whether S6 phosphorylation activates mTOR- dependent protein synthesis. Understanding how translation of new proteins is regulated at active synapses may provide novel insights on mechanisms regulating activity-dependent protein synthesis and on disorders involving disruptions of synaptic protein synthesis, such as Fragile X syndrome.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Predoctoral Individual National Research Service Award (F31)
Project #
5F31NS083349-03
Application #
8911386
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Mamounas, Laura
Project Start
2013-09-13
Project End
2016-09-12
Budget Start
2015-09-13
Budget End
2016-09-12
Support Year
3
Fiscal Year
2015
Total Cost
Indirect Cost
Name
University of California Irvine
Department
Other Basic Sciences
Type
Schools of Arts and Sciences
DUNS #
046705849
City
Irvine
State
CA
Country
United States
Zip Code
92617