The overall goal of this application is to study cerebral microvascular vasodilator function in young and old humans and test hypotheses broadly related to microvascular function and cognition. This project will serve as a vehicle to build upon the applicant's training in cardiovascular aging and integrate with the cerebrovascular changes associated with Mild Cognitive Impairment (MCI) and Alzheimer's disease. Recent evidence suggests that microvascular dysfunction is a major contributing factor to MCI, the transitional stage between normal aging and dementia or Alzheimer's disease. Because Alzheimer's patients demonstrate systemic endothelial dysfunction and reduced endothelial progenitor cells (EPCs), it is likely that MCI patients have a similar phenotype. To address our overall goal we will systematically evaluate microvascular vasodilator function in humans with and without MCI.
In Aim 1 we will determine if cerebral and peripheral vasodilator responses are blunted in MCI patients by comparing CO2-mediated vasodilation in the middle cerebral artery (MCA) and the forearm blood flow response to reactive hyperemia in 3 groups: 1) young healthy adults;2) cognitively intact older adults;and 3) older adults with MCI.
In Aim 2 we will determine if a loss of vasodilating prostaglandins explains the reduction in MCA vasodilator responses to CO2 by comparing the effects of indomethacin on CO2-mediated vasodilation in the MCA in the same 3 groups. We expect a loss of prostaglandin-mediated vasodilator mechanisms in both the intact older subjects and MCI patients.
In Aim 3 we will determine if blunted EPC regenerative capacity accompanies the reduction in cerebral vasodilator responses to CO2. We will determine the regenerative capacity by assessing reendothelialization using a carotid artery injury mouse model after transplantation of human EPCs from 3 groups: 1) young healthy adults;2) older cognitively intact adults;3) older adults with MCI. We expect that EPC regenerative capacity is greatest in young subjects, intermediate in older adults and reduced in MCI patients and correlated with CO2-mediated cerebral vasodilation. In summary, we have a comprehensive plan to investigate cerebral vasodilator function in humans and how it is altered by age or cognitive status. The use of a stepped hypercapnic ventilatory protocol will permit us to assess graded vasodilator responses in the MCA in a way that is non-invasive yet conceptually similar to the tests of vascular function in the forearm and heart that have provided great mechanistic understanding of microvascular pathology in cardiovascular disease. The studies with indomethacin will permit us to test the role of vasodilating prostaglandins in the loss of vasodilator function with aging and MCI. The examination of EPC regenerative capacity further explores the notion that microvascular dysfunction is an underlying factor in MCI. Together this approach will provide significant insight into the role of microvascular dysfunction in cognitive impairment and permit the candidate to develop translational expertise in the mechanisms of cerebral blood flow regulation.

Public Health Relevance

With an aging population, early identification of debilitating diseases like dementia and Alzheimer's is crucial for adequate prevention and treatment. Microvascular dysfunction in the cerebral circulation is likely an under-recognized mechanism contributing to mild cognitive impairment and the associated dementia.
We aim to use a physiological test of cerebral vasodilator function as a method to identify potential mechanisms related to cognitive decline. Our human studies will be complemented by translational studies in endothelial progenitor cells to explore cellular mechanisms that might contribute to altered physiology.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Postdoctoral Individual National Research Service Award (F32)
Project #
1F32AG038067-01A1
Application #
8118727
Study Section
Special Emphasis Panel (ZRG1-F10A-S (20))
Program Officer
Petanceska, Suzana
Project Start
2011-09-14
Project End
2013-01-13
Budget Start
2011-09-14
Budget End
2012-09-13
Support Year
1
Fiscal Year
2011
Total Cost
$51,326
Indirect Cost
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905
Al-Khateeb, Abdulrahman A; Limberg, Jacqueline K; Barnes, Jill N et al. (2017) Acute cyclooxygenase inhibition and baroreflex sensitivity in lean and obese adults. Clin Auton Res 27:17-23
Peinado, Ana B; Harvey, Ronee E; Hart, Emma C et al. (2017) Neural control of blood pressure in women: differences according to age. Clin Auton Res 27:157-165
Rickards, Caroline A; Johnson, Blair D; Harvey, Ronée E et al. (2015) Cerebral blood velocity regulation during progressive blood loss compared with lower body negative pressure in humans. J Appl Physiol (1985) 119:677-85
Harvey, Ronee E; Hart, Emma C; Charkoudian, Nisha et al. (2015) Oral Contraceptive Use, Muscle Sympathetic Nerve Activity, and Systemic Hemodynamics in Young Women. Hypertension 66:590-7
Barnes, Jill N (2015) Exercise, cognitive function, and aging. Adv Physiol Educ 39:55-62
Joyner, Michael J; Barnes, Jill N; Hart, Emma C et al. (2015) Neural control of the circulation: how sex and age differences interact in humans. Compr Physiol 5:193-215
Barnes, Jill N; Hart, Emma C; Curry, Timothy B et al. (2014) Aging enhances autonomic support of blood pressure in women. Hypertension 63:303-8
Curry, Timothy B; Hines, Casey N; Barnes, Jill N et al. (2014) Relationship of muscle sympathetic nerve activity to insulin sensitivity. Clin Auton Res 24:77-85
Harvey, Ronee E; Barnes, Jill N; Charkoudian, Nisha et al. (2014) Forearm vasodilator responses to a ?-adrenergic receptor agonist in premenopausal and postmenopausal women. Physiol Rep 2:
Taylor, Jennifer L; Hines, Casey N; Nicholson, Wayne T et al. (2014) The effect of ageing and indomethacin on forearm reactive hyperaemia in healthy adults. Exp Physiol 99:859-67

Showing the most recent 10 out of 15 publications