The innate immune system detects the presence of invading microorganisms through a panel of pattern recognition receptors. These receptors can sense the presence of intracellular or extracellular microbial patterns such as DNA, RNA, and bacterial cell wall components. Activation of signaling pathways downstream of ligand binding leads to the induction of pro-inflammatory cytokines such as type I Interferons (IFN). While the induction of IFN is typically considered an anti-viral mechanism, bacterial pathogens also induce type I interferon during infection. Interestingly, the mechanisms underlying IFN induction during infection are largely unknown. In general, we are interested in mechanisms by which recognition of bacteria by the innate immune results in the induction of IFN. Our specific interest focuses on cyclic-di-GMP (c-di-GMP), a bacterial signaling molecule that regulates biofilm formation, motility and virulence. This molecule has recently been proposed to induce a type I interferon response following translocation into host cells. However, the direct host intracellular molecular sensor has yet to be identified. The proposed works seeks to confirm the cytosolic sensing of c-di-GMP, identify bacterial pathogens that induce IFN through cytosolic sensing of c-di-GMP, and identify the eukaryotic molecule(s) essential for cytosolic recognition of c-di-GMP and induction of IFN. C-di-GMP is a molecule produced exclusively by bacteria and eukaryotic organisms do not appear to possess the enzymes required for its synthesis. Therefore, this molecule represents a unique target for drug design. Research into understanding the mechanism of cytosolic detection of c-di-GMP will aid in generating better vaccines, adjuvants and therapies.

Public Health Relevance

Bacterial pathogens use cyclic-di-GMP to regulate virulence factors. In addition, host cells sense this molecule during infection leading to a potent immune response against the bacteria. The goal of this application is to identify the essential host components required to respond to cyclic-di-GMP during infection. Understanding the innate immune system's response to cyclic-di-GMP is an essential aspect of designing effective vaccines against bacterial pathogens.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Postdoctoral Individual National Research Service Award (F32)
Project #
5F32AI091100-02
Application #
8107576
Study Section
Special Emphasis Panel (ZRG1-F13-C (20))
Program Officer
Prograis, Lawrence J
Project Start
2010-07-01
Project End
2013-06-30
Budget Start
2011-07-01
Budget End
2012-06-30
Support Year
2
Fiscal Year
2011
Total Cost
$51,326
Indirect Cost
Name
University of California Berkeley
Department
Biochemistry
Type
Schools of Arts and Sciences
DUNS #
124726725
City
Berkeley
State
CA
Country
United States
Zip Code
94704
Barker, Jeffrey R; Koestler, Benjamin J; Carpenter, Victoria K et al. (2013) STING-dependent recognition of cyclic di-AMP mediates type I interferon responses during Chlamydia trachomatis infection. MBio 4:e00018-13
Conlon, Joseph; Burdette, Dara L; Sharma, Shruti et al. (2013) Mouse, but not human STING, binds and signals in response to the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid. J Immunol 190:5216-25
Burdette, Dara L; Vance, Russell E (2013) STING and the innate immune response to nucleic acids in the cytosol. Nat Immunol 14:19-26
Diner, Elie J; Burdette, Dara L; Wilson, Stephen C et al. (2013) The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. Cell Rep 3:1355-61
Burdette, Dara L; Monroe, Kathryn M; Sotelo-Troha, Katia et al. (2011) STING is a direct innate immune sensor of cyclic di-GMP. Nature 478:515-8