The promise of skeletal regenerative medicine to mitigate age-related bone loss and support fracture healing critically depends on the ability to manipulate the biological properties of osteogenic progenitor cells. Transcriptional and post-transcriptional regulatory mechanisms control cell fate determination and phenotype- specific gene expression when progenitor cells commit to the osteoblast lineage. MicroRNAs (miRNAs or miRs) and epigenetic regulators (EpiRegs) regulate osteogenic differentiation by controlling the expression of TFs. Therefore, this proposal will focus on miR-TF-EpiReg circuits that control osteoblast differentiation. The central hypothesis of the overall project is that osteoblast differentiation is controlled by miRNAs- TF-EpiReg circuits. Based on recent preliminary data, this proposal has evolved to address the specific working model that miR155 suppresses while miR101 stimulates osteoblast maturation by targeting distinct TFs and EpiRegs, respectively. Maximal expression of miR155 occurs in undifferentiated osteoblasts where we predict that miR155 - together with co-regulated miRNAs - controls a group of common TF targets that attenuate osteoblast maturation. For miR101, we observed that it is maximal in mature osteoblasts and targets a critical epigenetic regulator, Ezh2, which methylates histone H3. Our preliminary data show that Ezh2 expression is inversely regulated with miR101 and is critical for normal skeletal development, based on our phenotypic characterization of a conditional Ezh2 null mouse model. We will determine (i) the biological significance of miR155 in a novel miR/TF circuit that suppresses osteoblast differentiation in cell culture and in transgenic mouse models that conditionally express miR155 (Aim 1), as well as (ii) the importance of a miR101-Ezh2 axis during osteoblast differentiation in vivo and ex vivo by conditional expression of miR101 in transgenic mice (Aim 2). Upon completion of the primary objectives of this proposal, my long term goals are to examine the molecular consequences of miRNA dependent TF-EpiReg networks using RNASeq and ChiP-Seq approaches to define new drug-sensitive regulatory pathways. These studies should ultimately lead to the development of osteotropic drugs that could become new bone anabolic therapies. This future work as independent investigator would leverage my combined expertise in pharmacology, epigenetics and mouse bone biology that I acquired during doctoral and post-doctoral training.

Public Health Relevance

Osteoporosis, osteoarthritis and tendonitis are debilitating diseases that affect millions of Americans with billions of dollars spent annually on osteoporotic fractures. Mesenchymal progenitor cell are precursor to musculoskeletal lineage cells including osteoblasts, chondrocytes and tenocytes and myoblasts. The expression of key transcription factors is critical in determining the fate of mesenchymal progenitor cells. Transcription factors and other genes are epigenetically regulated by microRNAs. We will evaluate the role of select microRNAs during osteoblast development. Understanding the interplay between transcription factors and microRNAs is instrumental in deciphering the mechanism that control bone development and diseases. Transcription factors and microRNAs may be targeted in the future in the treatment of osteoporosis and other musculoskeletal diseases.

National Institute of Health (NIH)
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Postdoctoral Individual National Research Service Award (F32)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-F10B-B (20)L)
Program Officer
Chen, Faye H
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Mayo Clinic, Rochester
Other Domestic Non-Profits
United States
Zip Code
Lin, Yang; Lewallen, Eric A; Camilleri, Emily T et al. (2016) RNA-seq analysis of clinical-grade osteochondral allografts reveals activation of early response genes. J Orthop Res 34:1950-1959
Camilleri, Emily T; Gustafson, Michael P; Dudakovic, Amel et al. (2016) Identification and validation of multiple cell surface markers of clinical-grade adipose-derived mesenchymal stromal cells as novel release criteria for good manufacturing practice-compliant production. Stem Cell Res Ther 7:107
Lewallen, Eric A; Jones, Dakota L; Dudakovic, Amel et al. (2016) Osteogenic potential of human adipose-tissue-derived mesenchymal stromal cells cultured on 3D-printed porous structured titanium. Gene 581:95-106
Getzlaf, Matthew A; Lewallen, Eric A; Kremers, Hilal M et al. (2016) Multi-disciplinary antimicrobial strategies for improving orthopaedic implants to prevent prosthetic joint infections in hip and knee. J Orthop Res 34:177-86
Morhayim, Jess; van de Peppel, Jeroen; Braakman, Eric et al. (2016) Osteoblasts secrete miRNA-containing extracellular vesicles that enhance expansion of human umbilical cord blood cells. Sci Rep 6:32034
Dudakovic, Amel; Camilleri, Emily T; Riester, Scott M et al. (2016) Enhancer of Zeste Homolog 2 Inhibition Stimulates Bone Formation and Mitigates Bone Loss Caused by Ovariectomy in Skeletally Mature Mice. J Biol Chem 291:24594-24606
Riester, Scott M; Arsoy, Diren; Camilleri, Emily T et al. (2015) RNA sequencing reveals a depletion of collagen targeting microRNAs in Dupuytren's disease. BMC Med Genomics 8:59
Dudakovic, Amel; Camilleri, Emily T; Xu, Fuhua et al. (2015) Epigenetic Control of Skeletal Development by the Histone Methyltransferase Ezh2. J Biol Chem 290:27604-17