It has been known for a long time that the hormonal environment of a person influences bone marrow function. However, the precise molecular mechanism by which this occurs is not known. Epigenetic changes, such as the attachment of a methyl group to DNA and the alteration of histone proteins can regulate the expression of genes that are necessary for stem cell differentiation. This proposal utilizes an animal model that expresses DNMT3B7, a truncated DNA methyltransferase 3B isoform that is commonly expressed in human cancers, to interrogate whether DNA methylation changes can influence the development of blood cells. To test the influence of DNMT3B7 expression on blood cell development, DNMT3B7-expressing fetal liver cells or wild-type E14.5 fetal liver cells were transplanted into recipient animals. Interestingly, female recipients failed to achieve normal peripheral blood counts in the first two months after undergoing transplantation with DNMT3B7-expressing cells, but male recipients had normal blood counts. Transplantation into females that lacked female hormones demonstrated loss of the observed effect, suggesting that the female hormonal milieu is suppressive to DNMT3B7-expressing stem cell function. Thus, we have found that DNMT3B7 expression uncovers a striking influence of gender i.e., hormonal milieu, on stem cell function. I hypothesize that the expression of DNMT3B7 renders HSCs more sensitive to the hormonal milieu in female mice by altering DNA methylation patterns, and thus the expression of genes associated with HSC self- renewal and differentiation. I will use three specific aims to test my hypothesis: (1) Test the impact of DNMT3B7 expression on hematopoietic stem and progenitor cells regarding (a) induced epigenetic changes and (b) their in vitro colony forming potential in the presence and absence of sex-specific hormones;(2) Measure the influence of sex hormones on the homing of HSCs to the bone marrow;(3) Examine the mechanism by which DNMT3B7 expression renders HSCs responsive to female hormones. The proposed work will give us more insight into the mechanisms that promote HSC engraftment and reconstitution in the presence of sex-specific hormones and therefore could have a significant impact on clinical stem cell transplantation.

Public Health Relevance

These planned studies could lead to novel ways to modify the hormonal environment in patients experiencing bone marrow failure, cancer patients, and/or stem cell transplant recipients to augment early stem cell function. Such an approach could lead to recovery or augmentation of stem cell function in patients with bone marrow failure syndromes, more rapid recovery of peripheral blood counts after chemotherapy, and increased use of umbilical cord cells as stem cell sources, whose limited cell number often restricts their use in adult patients.)

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Postdoctoral Individual National Research Service Award (F32)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1-GRB-G (M1))
Program Officer
Bishop, Terry Rogers
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Chicago
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Vasanthakumar, Aparna; Zullow, Hayley; Lepore, Janet B et al. (2015) Epigenetic Control of Apolipoprotein E Expression Mediates Gender-Specific Hematopoietic Regulation. Stem Cells 33:3643-54
Vasanthakumar, Aparna; Godley, Lucy A (2015) 5-hydroxymethylcytosine in cancer: significance in diagnosis and therapy. Cancer Genet 208:167-77
Madzo, Jozef; Liu, Hui; Rodriguez, Alexis et al. (2014) Hydroxymethylation at gene regulatory regions directs stem/early progenitor cell commitment during erythropoiesis. Cell Rep 6:231-244
Pollyea, Daniel A; Kohrt, Holbrook E; Zhang, Bing et al. (2013) 2-Hydroxyglutarate in IDH mutant acute myeloid leukemia: predicting patient responses, minimal residual disease and correlations with methylcytosine and hydroxymethylcytosine levels. Leuk Lymphoma 54:408-10
Vasanthakumar, Aparna; Lepore, Janet B; Zegarek, Matthew H et al. (2013) Dnmt3b is a haploinsufficient tumor suppressor gene in Myc-induced lymphomagenesis. Blood 121:2059-63
Madzo, Jozef; Vasanthakumar, Aparna; Godley, Lucy A (2013) Perturbations of 5-hydroxymethylcytosine patterning in hematologic malignancies. Semin Hematol 50:61-9
Busque, Lambert; Patel, Jay P; Figueroa, Maria E et al. (2012) Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat Genet 44:1179-81
Ostler, Kelly R; Yang, Qiwei; Looney, Timothy J et al. (2012) Truncated DNMT3B isoform DNMT3B7 suppresses growth, induces differentiation, and alters DNA methylation in human neuroblastoma. Cancer Res 72:4714-23