A major goal of visual systems neuroscience understands how visual information is encoded by sensory cortical neurons and how their activity is then decoded to guide behavior. It is well known that the recent history of visual experience (adaptation) can often profoundly influence both the responses of individual neurons as well as subjects' perceptual judgments. Thus, a comprehensive understanding of how the visual system gives rise to perception and behavior in diverse natural environments requires determining how sensory adaptation affects the encoding and decoding of visual information by populations of neurons. We will address these questions using chronic multi-electrode arrays to simultaneously record the activity of dozens of neurons in area V1 of macaque monkeys, while animals perform a well-defined perceptual task. First, we will characterize the way in which adaptation influences the representation of information in the neuronal population, by measuring the structure of cortical network activity in un-adapted and adapted states. Second, we will address how that network activity is decoded in both un-adapted and adapted sensory states, by relating trial-by-trial fluctuations in population activity to the animal's perceptual decisions This study will elucidate how activity in neural circuits is altered by recent visual experience, ad how downstream decision areas interpret this plasticity. A thorough understanding of how adaptation influences the encoding of visual information and the decoding of neural activity is needed to address how computations within the visual system accommodate recent changes in the sensory environment. Basic knowledge of these influences within a cortical region whose physiological and anatomical properties are well-known will aid in identifying aberrant sensory function due to various mental disorders.

Public Health Relevance

The basic research projects outlined in this proposal will further our understanding of both how sensory adaptation impacts the coordinated activity of networks of cortical neurons and how the activity within those neural populations subsequently influences perception. Knowledge of these aspects of sensory processing in normally functioning brains will enable the improved detection of aberrations in cortical sensory processing in a number of mental and visual disorders, which is a crucial step towards identifying avenues for translational research and treatment.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Postdoctoral Individual National Research Service Award (F32)
Project #
5F32EY023926-03
Application #
8894007
Study Section
Special Emphasis Panel (ZRG1-F02B-D (20))
Program Officer
Agarwal, Neeraj
Project Start
2013-08-01
Project End
2015-12-31
Budget Start
2015-08-01
Budget End
2015-12-31
Support Year
3
Fiscal Year
2015
Total Cost
$24,150
Indirect Cost
Name
Albert Einstein College of Medicine
Department
Neurosciences
Type
Schools of Medicine
DUNS #
110521739
City
Bronx
State
NY
Country
United States
Zip Code
10461