Genes regulating reproductive success in laboratory mice have provided important insights into the molecular and developmental processes underlying mammalian reproduction and have served as models for studies of human infertility. Traditional strains of laboratory mice, however, do not show the degree of variation in reproductive traits that one sees in nature. In contrast, a close relative to the laboratory mouse, the genus Peromyscus, exhibit striking differences in testes size, ejaculate traits, sperm morphology and swimming performance between species. This variation is likely due to the extreme divergence in mating system within the genus. In species where females mate multiple times over a breeding season, there is intense competition between ejaculates of different males for fertilization of her eggs. Accordingly, there is strong selective pressure on male reproductive traits that improve fertilization success under competition in promiscuous species. The proposed study is designed to exploit this natural variation in male reproductive traits to reveal genes that contribute to fertilization success, and capitalizes on a wealth of genomics tools available in mice. The two sister species on which this study will focus, P. maniculatus (promiscuous) and P. polionotus (monogamous), are interfertile, allowing one to measure the intensity of sperm competition both within and between species. Using laboratory pairing experiments in which either males or females are paired with multiple partners, I will measure variation in male reproductive success to test hypotheses on the adaptive significance of the observed phenotypic differences. I will then use a genetic mapping approach that combines anonymous markers and candidate genes to identify genetic regions and ultimately genes that contribute to male fertilization success. This experimental design allows us to directly link phenotypic differences in sperm traits with genotypic variation. The broad goal of this research is to use this unique system to uncover the genetic basis of male reproductive traits influenced by sperm competition, thereby expanding our understanding of reproductive biology and male infertility. Relevance: This research is of direct relevance to the mission of NIH because it will identify and molecularly characterize traits affecting male reproductive success. This approach will likely uncover genes different from those regulating fertility in laboratory mice, which do not show the extreme divergence in mating system that Peromyscus does, or in humans, where such controlled experiments are not possible. The identification of such genes may provide important insights into male infertility, a problem encountered by over 10% of couples. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Postdoctoral Individual National Research Service Award (F32)
Project #
1F32GM084719-01
Application #
7483912
Study Section
Special Emphasis Panel (ZRG1-F08-G (20))
Program Officer
Portnoy, Matthew
Project Start
2008-04-01
Project End
2011-03-31
Budget Start
2008-04-01
Budget End
2009-03-31
Support Year
1
Fiscal Year
2008
Total Cost
$49,646
Indirect Cost
Name
Harvard University
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
082359691
City
Cambridge
State
MA
Country
United States
Zip Code
02138
Peterson, Brant K; Weber, Jesse N; Kay, Emily H et al. (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One 7:e37135
Weber, Jesse N; Peters, Maureen B; Tsyusko, Olga V et al. (2010) Five Hundred Microsatellite Loci for Peromyscus. Conserv Genet 11:1243-1246
Fisher, Heidi S; Hoekstra, Hopi E (2010) Competition drives cooperation among closely related sperm of deer mice. Nature 463:801-3