Discovery of endogenous stem cells found within the heart, cardiac progenitor cells (CPC), has prompted intense basic discovery in multiple experimental animal models and clinical trials in heart failure patients. A survey of the literature reveals that the most popular experimental animal models exhibiting regenerative properties are also characterized by genome duplication or polyploidy. Our lab has recently discovered a fundamental difference between human and rodent CPCs: rodent CPCs possess polyploid mononuclear tetraploid (4n) chromatin content, whereas human CPCs are mononuclear diploid (2n) cells. This fundamental biological distinction between humans and rodents prompts provocative questions regarding regenerative potential differences between humans versus other species as well as the translational applicability of regenerative studies performed in rodent models. If ploidy is an integral aspect of tissue regeneration in lower vertebrates and other species, then elucidating the biological basis of CPC ploidy and mechanistic differences in cell signaling and mitosis between polyploid rodent CPCs versus diploid human CPCs will provide important insight for enhancement of regenerative potential. The overarching hypothesis of this proposal is that mononuclear chromatin duplication in CPCs improves regenerative capacity of the heart by overriding senescence-induced cell cycle arrest and increasing tolerance of DNA damage and oxidative stress. The short-term goal is to establish biological distinctions and elucidate unique molecular properties of polyploidy CPCs relative to diploid human CPCs. The significance is to understand the advantages of polyploidy for regeneration while also uncovering previously unrecognized limitations of extrapolating from experimental animal model studies to clinical interventional approaches.
Two specific aims are proposed based upon the following hypotheses: (1) Chromatin content in murine CPCs responds to alterations in environment leading to changes in gene transcription and mitotic chromosomal alignment, and (2) CPCs of murine origin with tetraploid content possess enhanced regenerative characteristics and potential relative to diploid CPCs by phenotypic analysis as well as following adoptive transfer into an experimental infarction injury model. The novelty and impact is to define novel biological attributes of a well-known and heavily studied cardiac stem cell and to apply that understanding to elucidate the molecular and cellular basis of regenerative responses in human versus murine myocardial responses to pathologic injury. The long-term goal is to apply the knowledge gained from understanding the role of polyploidy in regeneration to improve upon clinically relevant therapies in the treatment of heart failure.

Public Health Relevance

This proposal focuses on the recent discovery of mononuclear tetraploid (4n) chromatin content in murine CPCs, whereas human CPCs are mononuclear diploid (2n) cells. Understanding the unique biology of the murine CPCs will lead to a better understanding of the functional attributes of these cells and how CPCs differ between murine models and humans. These studies have broad implications relevant to the stem cell and regenerative medicine community to impact both basic scientific and clinical oriented cardiovascular research.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Postdoctoral Individual National Research Service Award (F32)
Project #
1F32HL136196-01
Application #
9259019
Study Section
Special Emphasis Panel (ZRG1-F10A-S (20)L)
Program Officer
Wang, Wayne C
Project Start
2017-02-01
Project End
2019-01-31
Budget Start
2017-02-01
Budget End
2018-01-31
Support Year
1
Fiscal Year
2017
Total Cost
$57,066
Indirect Cost
Name
San Diego State University
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
073371346
City
San Diego
State
CA
Country
United States
Zip Code
92182
Gude, Natalie A; Firouzi, Fareheh; Broughton, Kathleen M et al. (2018) Cardiac c-Kit Biology Revealed by Inducible Transgenesis. Circ Res 123:57-72
Broughton, Kathleen M; Wang, Bingyan J; Firouzi, Fareheh et al. (2018) Mechanisms of Cardiac Repair and Regeneration. Circ Res 122:1151-1163
Broughton, Kathleen M; Sussman, Mark A (2018) Enhancement Strategies for Cardiac Regenerative Cell Therapy: Focus on Adult Stem Cells. Circ Res 123:177-187
Fernández-Avilés, Francisco; Sanz-Ruiz, Ricardo; Climent, Andreu M et al. (2017) Global position paper on cardiovascular regenerative medicine. Eur Heart J 38:2532-2546
Monsanto, Megan M; White, Kevin S; Kim, Taeyong et al. (2017) Concurrent Isolation of 3 Distinct Cardiac Stem Cell Populations From a Single Human Heart Biopsy. Circ Res 121:113-124
Broughton, Kathleen M (2017) I'll Take My Science Spicy, Please. Circ Res 120:1860-1861