Impairments in cognitive control and memory present serious challenges to daily living for individuals with a variety of neurological and neuropsychiatric impairments. Understanding relevant brain mechanisms is key to the development of better diagnostic tools and improved treatment strategies. This proposed research focuses on a specific capability that is at the intersection of cognitive control and memory - behavioral flexibility, which refers to the ability to learn appropriate responses based on current situational context. Although this ability is clearly relevant for real-world memory challenges, tools for quantification of behavioral flexibility capabilities in individuals with neurological and neuropsychiatric impairments are limited, as is our understanding of relevant brain mechanisms. Under this proposed award, we will therefore refine a novel method we have developed for quantifying behavioral flexibility and the cognitive and brain processing that supports this capability. Brain mechanisms will be studied via the integration of various powerful technologies and analysis methodologies that allow us to determine how interactivity between key cognitive control and memory brain networks support behavioral flexibility. We will use sensitive eye-movement tracking measures of memory in conjunction with neuroimaging with functional magnetic resonance imaging (fMRI), as well as connectivity and graph theoretical analyses to identify brain network interactions that are important for behavioral flexibility. Furthermore, we will examine how damage to these networks due to ischemic stroke impairs behavioral flexibility using a voxel-based lesion-deficit mapping approach in stroke survivors. These methods will collectively provide information regarding normal network function in healthy individuals as well as the nature of network dysfunction in individuals with brain lesions. Execution of the proposed project will require a considerable extension of the applicant's current background and will be supported by an integrated training plan involving course work, instruction in advanced neuroimaging and eye-tracking methods by experts, as well as career-development training that will enable the applicant to conduct high- quality, independent neuroscience research.

Public Health Relevance

Memory impairments are a serious public health burden that result in significant decreases in life quality for those affected. However, current approaches to assess and treat memory impairment are limited. This project will improve assessment of memory impairment and advance understanding of the brain mechanisms for learning and memory, therefore paving the way for improved treatments.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Postdoctoral Individual National Research Service Award (F32)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-F02B-M (20))
Program Officer
Babcock, Debra J
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Northwestern University at Chicago
Other Health Professions
Schools of Arts and Sciences
United States
Zip Code