Ocular and traumatic brain injuries (TBI) from blunt trauma or blast injury to the head occur with high frequency on the battlefield, and they are often accompanied by multiple visual dysfunctions, acuity loss and blindness in one or both eyes. Optic neuropathies are characterized by primary injury to the optic nerve, and loss of ganglion cells and their axons. Ganglion cell death is mediated in part by excessive intracellular Ca2+ ([Ca2+]i) loads following injury. Consistent with this finding is the enhancement of retinal ganglion cell survival after optic nerve crush with the administration of Ca2+ channel antagonists, which inhibit both L- and T-type Ca2+ currents, and reduce secondary ganglion cell death. The rationale underlying the proposed studies is that reduction of ganglion cell intracellular Ca2+ levels by regulation of Ca2+ channel activity may be an important component of protective strategies for the treatment of retinal injury. Suppression of excessively elevated [Ca2+]i in ganglion cells would provide a temporal window for ganglion cell survival and axonal recovery following injury. Proposed studies will test the hypothesis that suppression of elevated [Ca2+]i following nerve injury enhances ganglion cell survival.
Specific aim 1 will define the signaling role of L- and T-type Ca2+ channels, and their accessory proteins (23 and 124) in mouse retinal ganglion cells. Experiments will determine a) the expression of L- and T-type Ca2+ channels and their accessory proteins by ganglion cells, and b) characterize the physiological and biophysical properties of L- and T-type Ca2+ currents of ganglion cells.
Specific aim 2 will test the hypothesis that ganglion cell Ca2+ signaling is dysregulated immediately following and several days after optic nerve crush or transection. Investigations will determine if there are short (12 and 24 hours)- and long (10 and 20 days)-term alterations of a) the expression of L- and T-type, and 23 and 124 Ca2+ channel subunits by ganglion cells, and b) membrane mechanisms that mediate Ca2+ currents and signaling in ganglion cells following optic nerve injury.
Specific aim 3 will test the hypothesis that Ca2+ channel antagonists and small interfering RNA (siRNA) antisense Ca2+ channel subunit vectors regulate Ca2+ signaling, and enhance ganglion cell survival after optic nerve injury. Investigations will determine if a) the L- and T-type Ca2+ channel antagonist, lomerizine, and b) antisense T-type (CaV3.1 and CaV3.2), and 23 and 124 Ca2+ channel subunit siRNA vectors, modulate Ca2+ signaling and enhance ganglion cell survival following optic nerve injury. Proposed studies will elucidate Ca2+ signaling in normal and injured ganglion cells, and develop novel approaches for controlling elevated intracellular Ca2+ following nerve injury, which will enhance ganglion cell survival, a key step in saving vision. These studies are consistent with the health-related goals of the Veterans Adminstration to develop highly effective and novel treatments for eye injury and disease.

National Institute of Health (NIH)
Veterans Affairs (VA)
Non-HHS Research Projects (I01)
Project #
Application #
Study Section
Neurobiology C (NURC)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
VA Greater Los Angels Healthcare System
Los Angeles
United States
Zip Code
Pérez de Sevilla Müller, Luis; Azar, Shaghauyegh S; de Los Santos, Janira et al. (2017) Prox1 Is a Marker for AII Amacrine Cells in the Mouse Retina. Front Neuroanat 11:39
Wang, Yanling; Wang, Wenyao; Liu, Jessica et al. (2016) Protective Effect of ALA in Crushed Optic Nerve Cat Retinal Ganglion Cells Using a New Marker RBPMS. PLoS One 11:e0160309
Pérez de Sevilla Müller, Luis; Sargoy, Allison; Fernández-Sánchez, Laura et al. (2015) Expression and cellular localization of the voltage-gated calcium channel ?2?3 in the rodent retina. J Comp Neurol 523:1443-60
Wilson, Ariel M; Chiodo, Vince A; Boye, Sanford L et al. (2014) Inhibitor of apoptosis-stimulating protein of p53 (iASPP) is required for neuronal survival after axonal injury. PLoS One 9:e94175
Fernández-Sánchez, Laura; de Sevilla Müller, Luis Pérez; Brecha, Nicholas C et al. (2014) Loss of outer retinal neurons and circuitry alterations in the DBA/2J mouse. Invest Ophthalmol Vis Sci 55:6059-72
Sargoy, Allison; Barnes, Steven; Brecha, Nicholas C et al. (2014) Immunohistochemical and calcium imaging methods in wholemount rat retina. J Vis Exp :e51396
Pérez de Sevilla Müller, Luis; Sargoy, Allison; Rodriguez, Allen R et al. (2014) Melanopsin ganglion cells are the most resistant retinal ganglion cell type to axonal injury in the rat retina. PLoS One 9:e93274
Sargoy, Allison; Sun, Xiaoping; Barnes, Steven et al. (2014) Differential calcium signaling mediated by voltage-gated calcium channels in rat retinal ganglion cells and their unmyelinated axons. PLoS One 9:e84507
Farrell, Spring R; Sargoy, Allison; Brecha, Nicholas C et al. (2014) Modulation of voltage-gated Ca2+ channels in rat retinal ganglion cells by gabapentin. Vis Neurosci 31:47-55
Rodriguez, Allen R; de Sevilla Müller, Luis Pérez; Brecha, Nicholas C (2014) The RNA binding protein RBPMS is a selective marker of ganglion cells in the mammalian retina. J Comp Neurol 522:1411-43

Showing the most recent 10 out of 11 publications