The identification of patients at high risk of recurrence is one of the most important assessments in the clinical management of breast cancer. Sentinel lymph node status is the current gold standard for clinical discrimination between good and poor prognosis and for deciding if patients receive adjuvant chemotherapy following surgery. However, ~30% of women with node-negative status experience recurrence within 10 years of initial treatment, while ~25% of women with node-positive status do not. Accordingly, there is a need for additional prognostic methods to assess recurrence and survival in breast cancer patients. Urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor type-1 (PAI-1) have been validated at the highest level of evidence (LOE-1) as clinical biomarkers of prognosis in breast cancer. The American Society of Clinical Oncology recommends using uPA and PAI-1 levels in breast tumors for the routine assessment of prognosis in patients with newly diagnosed breast cancer and for deciding whether node-negative breast cancer patients can forgo adjuvant chemotherapy. The sole validated method for quantifying uPA and PAI-1 levels in breast tumor tissue is a colorimetric ELISA assay requiring a minimum of 300 mg of tumor tissue. Generally, only open (excisional) biopsy will yield 300 mg of tissue, while the more common vacuum-assisted core needle biopsies yield d 110 mg of tumor tissue. The 300 mg requirement also places a restrictive lower limit on the size of tumors that can be evaluated. Accordingly, the availability of a reliable method to accurately quantify uPA and PAI-1 levels in d100 mg of biopsy tissue would have a profound impact on the clinical management of breast cancer. The objective of the studies outlined in this proposal is to develop technologies to rapidly and accurately quantify levels of uPA and PAI- 1 in small tissue specimens (10-100 mg) obtained by fine needle core biopsies of breast tumors. Our central hypothesis is that the combined use of an innovative pressure cycling technology to solubilize tissue proteins and a novel and highly sensitive immunoassay format, called immunoliposome-polymerase chain reaction (ILPCR), developed in our laboratory will achieve the level of quantification for uPA and PAI-1 stated in our objective. The rationale for these studies is that their successful completion will provide clinicians with more reliable means to determine those node-negative patients most likely to benefit from adjuvant chemotherapy following surgery for beast cancer. Accordingly, our project proposes the following three specific aims.
Aim 1 is to develop and optimize a method to rapidly and quantitatively extract soluble uPA and PAI-1 from breast tumor tissue using rapid pressure-cycling technology.
Aim 2 is to develop and optimize ILPCR assays that can accurately quantify uPA and PAI-1 from 10-100 mg of breast tumor tissue with an assay sensitivity and specificity of e95%.
Aim 3 is to validate the rapid pressure-cycling extraction method and ILPCR assays for uPA and PAI-1 against the gold standard ELISA assay by using tissue obtained from the same breast tumor for both assays. These studies are innovative because they will overcome a critical barrier to the use of uPA and PAI-1 for the prognostic evaluation of breast tumors. This research will also improve clinical practice because it will provide clinicians with more reliable means to determine those node-negative patients most likely to benefit from adjuvant chemotherapy, particularly those patients with hormone receptor-negative and node-negative grade 2 tumors who are borderline candidates for chemotherapy. Finally, this research is relevant to Veterans and the VA health care system because it will improve the survival and quality of life of breast cancer patients. It will also facilitate the detection and prognostic assessment of breast tumors at earlier stages where clinical options are greatest and where treatment outcomes are most likely to be favorable.

Public Health Relevance

Breast cancer is the second leading cause of cancer death among women. With the average age of female Veterans approaching 48, the incidence of breast cancer in the VA population will start to rise. This escalation will continue because women are now the fastest growing subgroup of U.S. Veterans. Although the incidence of male breast cancer is low, environmental factors experienced in military deployment may lead to an increased risk of breast cancer in both men and women. The assays to be developed in this project will provide clinicians with more reliable means to determine those node-negative patients most likely to benefit from adjuvant chemotherapy following surgery for breast cancer. This will result in decreased patient morbidity and mortality providing improved quality of life for Veteran breast cancer patients. The associated reduction in cancer recurrence will also lead to a decrease in overall patient burden and health care costs for the VA medical system.

Agency
National Institute of Health (NIH)
Institute
Veterans Affairs (VA)
Type
Non-HHS Research Projects (I01)
Project #
5I01BX001092-02
Application #
8601254
Study Section
Oncology A (ONCA)
Project Start
2012-10-01
Project End
2018-09-30
Budget Start
2014-10-01
Budget End
2015-09-30
Support Year
2
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Baltimore VA Medical Center
Department
Type
DUNS #
796532609
City
Baltimore
State
MD
Country
United States
Zip Code
21201
Mason, Jeffrey T (2016) Proteomic analysis of FFPE tissue: barriers to clinical impact. Expert Rev Proteomics 13:801-3
Fowler, Carol B; Man, Yan-Gao; Mason, Jeffrey T (2014) An ultra-sensitive immunoassay for quantifying biomarkers in breast tumor tissue. J Cancer 5:115-24
Fowler, Carol B; O'Leary, Timothy J; Mason, Jeffrey T (2014) Improving the Proteomic Analysis of Archival Tissue by Using Pressure-Assisted Protein Extraction: A Mechanistic Approach. J Proteomics Bioinform 7:151-157
Fowler, Carol B; O'Leary, Timothy J; Mason, Jeffrey T (2013) Toward improving the proteomic analysis of formalin-fixed, paraffin-embedded tissue. Expert Rev Proteomics 10:389-400
Shi, Shan-Rong; Taylor, Clive R; Fowler, Carol B et al. (2013) Complete solubilization of formalin-fixed, paraffin-embedded tissue may improve proteomic studies. Proteomics Clin Appl 7:264-72
Jiang, Bin; Mason, Jeffrey; Jewett, Anahid et al. (2013) Tumor-infiltrating immune cells: triggers for tumor capsule disruption and tumor progression? Int J Med Sci 10:475-97