Postoperative ileus (POI) is one of the main complication associated with abdominal surgery (AS) procedures. A number of Veterans deployed in the war zones undergo injuries requiring AS. After AS, patients usually develop nausea, vomiting, bloating, and abdominal pain which are major contributing factors to postoperative discomfort. The incidence of ileus is highest in gastrointestinal (GI) surgery with 24% of patients developing ileus and can be as high as 40% in laparotomy patients. The health burden and the cost of prolonged hospitalization due to POI have been estimated to be as much as $1.47 billion annually in the USA, illustrating its large socioeconomic impact. The lack of effective treatments has prompted novel experimental studies to elucidate the underlying mechanisms. Recent insight in the pathophysiology of POI induced by AS have identified intestinal inflammation triggered by handling of the intestine as a contributing mechanism which is clinically a relevant target for treatment. In other inflammatory conditions, there is evidence that resident macrophages within the GI muscularis contribute to both the initiation and the resolution of inflammation through activations of M1 and M2 phenotypes secreting pro- and anti-inflammatory cytokines respectively. Recent studies point to the vagus nerve controlling a cholinergic anti-inflammatory pathway. We previously established that thyrotropin-releasing hormone (TRH) in the brainstem plays a physiological role (including in the cephalic phase) to stimulate the vagus innervating the GI tract. In the last granting period, we reported that intracisternal (ic) injection of TRH prevents the neurogenic (early phase) of POI occurring within 2-h of AS. Our preliminary data obtained at 6-h post-surgery indicate that 1) AS increases M1 but not M2 macrophages and the infiltration of neutrophils in the gastric muscularis externa along with delay gastric emptying (GE); 2) central vagal activation by ic injection of the stable TRH agonist, RX77368 prevents the above increases and reduces the delayed GE induced by AS without modifying basal GE in sham group. In the last granting period, we also established that AS induces a sharp reduction of plasma levels of the prokinetic hormone, ghrelin known to influence vagal activity and the response is prevented by ic TRH before AS. In addition, we obtained preliminary data showing that the novel long acting and brain penetrant ghrelin agonist, HM01 administered orally activates vagal preganglionic motor neurons in the brainstem and prevents AS-induced delayed GE. Based on these reports and exciting supportive preliminary data, we will test 3 HYPOTHESES:
Aim 1. AS induces inflammation in the rat gastric muscularis externa through changes in the activation status of M1 or M2 macrophages in the rat gastric muscularis externa. 2. Central vagal stimulation prevents AS-induced delayed GE by activating cholinergic anti-inflammatory pathway with the deactivation of M1 and or the activation of M2 macrophage leading to inhibiting the inflammation in the gastric muscularis externa. 3. The ghrelin agonist, HM01 is a promising candidate via oral administration to reverse POI by its dual potent prokinetic and anti- inflammatory actions through activation of vagal cholinergic pathway.
These aims will be achieved in the rat model of AS-induced POI combined with state-of-the art technologies in neuroanatomy (CLARITY technique combined with targeted double or triple labeling, including anterograde tracing and 3D imaging of vagal fibers, enteric neurons and macrophages), molecular biology (Laser microdissection combined with RT-PCR, RNAscope, RT-qPCR, microRNA targeting, MILLIPLEX Multiplex Assays using Bio-RAD Bio-Plex 3D suspension system powered by Luminex xMAP Technology) and functional study (gut motility and chemical stimulation of vagal activity). The completion of these specific aims will make a conceptual advance to target muscularis macrophages by deactivation of M1 and/or activation of M2 as a potential anti-inflammatory strategy and provide the first preclinical data to validate HM01 as a candidate for new therapy for POI.

Public Health Relevance

Postoperative ileus (POI) is a common clinical condition arising after almost every abdominal surgical procedure. The health burden and cost of prolonged hospitalization due to POI are significant. The underlying mechanisms of POI after abdominal surgeries are still incompletely understood. So far no effective therapy meets the medical need. Our experimental investigations will target innovative pathways to develop more effective therapeutic approaches alleviating POI symptoms and improving the quality of life for the VA patients. The proposed studies are based on our previous findings and supportive preliminary data using a novel orally active and long acting ghrelin agonist HM01. Those data points to chemical interventions promoting vagal activity as beneficial to curtail POI by modulating gut inflammatory response. This will be delineated at the level of macrophages and enteric nervous system in the muscularis externa. These studies will lead to novel understanding of underlying pathways involved in POI and unravel a potential new candidate for reducing POI.

National Institute of Health (NIH)
Veterans Affairs (VA)
Non-HHS Research Projects (I01)
Project #
Application #
Study Section
Gastroenterology (GAST)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
VA Greater Los Angels Healthcare System
Los Angeles
United States
Zip Code
Yuan, Pu-Qing; Taché, Yvette (2017) Abdominal surgery induced gastric ileus and activation of M1-like macrophages in the gastric myenteric plexus: prevention by central vagal activation in rats. Am J Physiol Gastrointest Liver Physiol 313:G320-G329
Erchegyi, Judit; Wang, Lixin; Gulyas, Jozsef et al. (2016) Characterization of Multisubstituted Corticotropin Releasing Factor (CRF) Peptide Antagonists (Astressins). J Med Chem 59:854-66
Wang, Lixin; Mogami, Sachiko; Karasawa, Hiroshi et al. (2014) Preventive effect of rikkunshito on gastric motor function inhibited by L-dopa in rats. Peptides 55:136-44
Duboc, Henri; Taché, Yvette; Hofmann, Alan F (2014) The bile acid TGR5 membrane receptor: from basic research to clinical application. Dig Liver Dis 46:302-12
Yakabi, Koji; Harada, Yumi; Takayama, Kiyoshige et al. (2014) Peripheral ?2-?1 adrenergic interactions mediate the ghrelin response to brain urocortin 1 in rats. Psychoneuroendocrinology 50:300-10
Stengel, A; Taché, Y (2013) Role of NUCB2/Nesfatin-1 in the hypothalamic control of energy homeostasis. Horm Metab Res 45:975-9