Veterans suffering loss of the larynx's vocal fold cover due to trauma or laryngeal cancer can suffer disabling voice difficulties, and treatment options are limited. A vibrating replacement tissue would revolutionize the treatment of laryngeal disorders. The work described in this proposal characterizes and optimizes a tissue-engineered vocal fold cover (TE-VFC). Adult human stem cells isolated from adipose tissue are cultured within fibrin hydrogel derived from the blood product cryoprecipitate. The result is a completely autologous three- dimensional tissue substitute. A significant innovation of this approach to vocal fold tissue engineering is th concomitant replication of the two layers (epithelial and mesenchymal) responsible for vibration in the native vocal fold cover. This model will be employed to systematically study fundamental issues of tissue engineering, stem cell differentiation, and vocal fold physiology. It is controllable, with an """"""""optimized"""""""" case that most closely replicates normal developmental conditions and produces bilayered epithelial and mesenchymal differentiation. A """"""""control"""""""" case is more typical of standard tissue culture conditions, and produces disorganized cell differentiation. Three research arms are proposed. First, extracellular matrix and basement membrane deposition are determined in the TE-VFC and the non- epithelialized control using immunohistochemistry and in situ hybridization. Epithelial barrier function is measured by trans-epithelial diffusion. Mechanisms for a difference in ECM remodeling between the two cases are investigated, such as matrix metalloproteinase secretion and pro-collagen mRNA. Second, mesenchymal cell phenotype is defined in the two conditions by protein expression and contractility. Potential signaling mechanisms controlling the phenotype are investigated, including EGF receptor and TGF- ?1. Finally, vibration and phonation are assessed in both cases as well as in de-epithelialized TE-VFC to identify the role of epithelium in voice production. The constructs are attached to the vocal ligaments of excised larynges simulating implantation conditions, and airflow-induced vibration is recorded with high-speed imaging. Successful completion of the proposed research will determine whether including an epithelium in a developing tissue construct offers benefit, by comparing the cell phenotype, microstructure, and function in epithelialized and control cases. It will also identify mechanisms by which epithelial cells influence adjacent cell phenotype and ECM remodeling, in a controlled system. Findings will be relevant in other epithelialized tissues as well as this vocal fold replacement. Finally, these in vitro studies of the TE-VFC will provide necessary information to proceed with animal and human implantation trials to treat severe vocal fold scarring.

Public Health Relevance

Vocal folds are the vibrating parts of the human larynx that produce voice. Vocal folds can be damaged from a number of injuries, including surgeries for laryngeal cancer or non-cancerous masses, radiation therapy for other head and neck cancers, smoke or chemical inhalation injuries, and chronic severe acid reflux. Once the vocal folds are scarred, there is little that ca be done to restore their vibration. Veterans with vocal fold injuries can suffer disabling voice difficulties with poor voice quality and vocal fatigue. The communication impairment limits social interactions and job opportunities. This project aims to develop an implantable vibrating replacement tissue to restore voice for these Veterans.

National Institute of Health (NIH)
Veterans Affairs (VA)
Veterans Administration (IK2)
Project #
Application #
Study Section
Cellular and Molecular Medicine (CAMM)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
VA Greater Los Angels Healthcare System
Los Angeles
United States
Zip Code
Goel, Alexander N; Badran, Karam W; Garrett, Alexander M et al. (2018) Sequelae of Index Complications following Inpatient Head and Neck Surgery: Characterizing Secondary Complications. Otolaryngol Head Neck Surg 159:274-282
Long, Jennifer L (2018) Repairing the vibratory vocal fold. Laryngoscope 128:153-159
Goel, Alexander N; Badran, Karam W; Braun, Adam P G et al. (2018) Minor Salivary Gland Carcinoma of the Oropharynx: A Population-Based Analysis of 1426 Patients. Otolaryngol Head Neck Surg 158:287-294
Feinstein, Aaron J; Zhang, Zhaoyan; Chhetri, Dinesh K et al. (2017) Measurement of Cough Aerodynamics in Healthy Adults. Ann Otol Rhinol Laryngol 126:396-400
Shiba, Travis L; Hardy, Jordan; Luegmair, Georg et al. (2016) Tissue-Engineered Vocal Fold Mucosa Implantation in Rabbits. Otolaryngol Head Neck Surg 154:679-88
Long, Jennifer L; Chhetri, Dinesh K (2015) Tissue engineering. Restoring voice. Science 350:908-9
Long, Jennifer; Salinas, Jonathan; Rafizadeh, Sassan et al. (2015) In vivo vocal fold cover layer replacement. Laryngoscope 125:406-11
Peng, Kevin A; Kuan, Edward C; Unger, Lindsey et al. (2015) A swallow preservation protocol improves function for veterans receiving chemoradiation for head and neck cancer. Otolaryngol Head Neck Surg 152:863-7
Tse, Justin R; Zhang, Zhaoyan; Long, Jennifer L (2015) Effects of vocal fold epithelium removal on vibration in an excised human larynx model. J Acoust Soc Am 138:EL60-4
Tse, Justin R; Long, Jennifer L (2014) Microstructure characterization of a decellularized vocal fold scaffold for laryngeal tissue engineering. Laryngoscope 124:E326-31