The goal of this Mentored Scientist Award (K01) application is to promote the development of the applicant into a multi-disciplinarily trained independent principal investigator. The strengths of the application are brought together by three major areas of emphasis as follows. 1) Credentials of the applicant. Dr. Pi's application builds upon her previous track-record of productivity with a concentrated determination to establish scientific independence through a change in research direction. The applicant's short-term goals encompass the acquisition of technical skills, initiation and establishment of an independent line of research, and to enhance professional skills (i.e. scientific writing, mentorin of trainees, grant writing, oral communication). Long-term goals are centered on becoming a leader in regenerative medicine, achieving a tenure-track position, training future scientists, and involvement in society and faculty leadership. 2) Training environment. Dr. Pi has received full commitment and the support of Drs. Bryon Petersen (mentor) and Gregory Schultz (co-mentor) to implement and complete the training necessary to advance outstanding junior faculty. Dr. Petersen is recognized as a world leader in the fields of stem cell biology and liver regeneration. Dr. Schultz complements the candidate's new direction of research by bringing renowned experience of understanding mechanism of fibrotic disorders. Dr. Pi has selected Drs. Lewin, Srivastava, and Gao as additional members due to their remarkable commitment and experience in developing the next generation of successful academic scientists. Dr. Pi will use the results obtained during the award period to justify and extend the scope of the project by formulating an independent New Investigator R01 application to advance into a tenure track position in academia. 3). Innovative models and research. The central hypothesis to be tested is that: Connective tissue growth factor (CTGF) is an important therapeutic target for alcoholic liver disease (ALD). The spectrum of ALD encompasses steatohepatitis, fibrosis to end-stage cirrhosis and liver cancer. The goal of this proposal is to understand the molecular mechanism of ALD and identify therapeutic targets that reverse alcoholic fibrosis and prevent cirrhosis. So far, there is no FDA approved treatment for any fibrotic disorder. CTGF overexpression, together with transforming growth factor (TGF)-, has been found in various kinds of fibrotic disorders. Our research has identified CTGF as a key molecule in the regulation of liver repair and hepatic progenitor cell (HPC) activation. We have developed several genetic mouse tools and will use them to determine the function of CTGF in ALD by testing: 1) whether CTGF can potentiate hepatocyte injury and inflammation during the early phase of alcoholic liver injury; 2) whether CTGF plays an important role in progression of alcoholic fibrosis and HPC activation; 3) whether targeting CTGF and TGF- utilizing RNA interference and adeno- associated virus (AAV) delivery system reduces alcoholic fibrosis. This project will employ a multidisciplinary approach, including liver pathophysiology, AAV and RNA-based therapies to test the central hypothesis.

Public Health Relevance

Alcoholic liver disease is a major health and financial concern worldwide. This project focuses on the roles of connective tissue growth factor in ALD and tests whether this pro-fibrogenic factor is a viable therapeutic target for reversing disease progression. A better understanding of the molecular basis of alcoholic liver disease could impact the millions of Americans afflicted with this problem.

Agency
National Institute of Health (NIH)
Institute
National Institute on Alcohol Abuse and Alcoholism (NIAAA)
Type
Research Scientist Development Award - Research & Training (K01)
Project #
1K01AA024174-01
Application #
8949674
Study Section
Special Emphasis Panel (ZAA1)
Program Officer
Radaeva, Svetlana
Project Start
2016-02-01
Project End
2021-01-31
Budget Start
2016-02-01
Budget End
2017-01-31
Support Year
1
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of Florida
Department
Pediatrics
Type
Schools of Medicine
DUNS #
969663814
City
Gainesville
State
FL
Country
United States
Zip Code
32611
Xu, Su; Zhu, Wenjun; Wan, Yamin et al. (2018) Decreased Taurine and Creatine in the Thalamus May Relate to Behavioral Impairments in Ethanol-Fed Mice: A Pilot Study of Proton Magnetic Resonance Spectroscopy. Mol Imaging 17:1536012117749051
Pi, Liya; Fu, Chunhua; Lu, Yuanquing et al. (2018) Vascular Endothelial Cell-Specific Connective Tissue Growth Factor (CTGF) Is Necessary for Development of Chronic Hypoxia-Induced Pulmonary Hypertension. Front Physiol 9:138
Feng, Xiaodi; Pi, Liya; Sriram, Sriniwas et al. (2017) Connective tissue growth factor is not necessary for haze formation in excimer laser wounded mouse corneas. PLoS One 12:e0172304
Bria, Adam; Marda, Jorgessen; Zhou, Junmei et al. (2017) Hepatic progenitor cell activation in liver repair. Liver Res 1:81-87
Wu, Qunfeng; Pi, Liya; Le Trinh, Thu et al. (2017) A Novel Vaccine Targeting Glypican-3 as a Treatment for Hepatocellular Carcinoma. Mol Ther 25:2299-2308
Wu, Qunfeng; Jorgensen, Marda; Song, Joanna et al. (2016) Members of the Cyr61/CTGF/NOV Protein Family: Emerging Players in Hepatic Progenitor Cell Activation and Intrahepatic Cholangiocarcinoma. Gastroenterol Res Pract 2016:2313850
Gjymishka, Altin; Pi, Liya; Oh, Seh-Hoon et al. (2016) miR-133b Regulation of Connective Tissue Growth Factor: A Novel Mechanism in Liver Pathology. Am J Pathol 186:1092-102