Macrophage migration inhibitory factor (MIF) plays an important role for the recruitment of innate and adaptive immune cells to the place of inflammation. MIF also activates various intracellular signaling pathways in the recruited cells for the release of other cytokines and the expression of cell adhesion molecules. The unique feature as a cytokine, MIF has catalytic (tautomerase) activity, which is yet controversial for its link to the immunological activity of MIF. Despite this controversy, recent studies support that the residues around the active site, not in the active site, play a role in interacting with the receptors. To date, three MIF receptors have been reported: 1) an invariant chain CD74, and CXC cytokine receptors 2) CXCR2 and 3) CXCR4. CD74 does not have tyrosine receptor kinase like signaling domain and requires CD44 that contains a kinase domain. It seems that all these receptors except CD44 directly interact with MIF. These receptors are also known to form hetero-oligomers. Our recent catalytic and chemotactic assays demonstrated that strong competitive inhibitors were not always more potent to the MIF-mediated chemotaxis than weak non-competitive inhibitors. In addition, crystal structures of MIIF inhibitors reveal that free functional groups are exposed to the solvent and available for the interference with receptor binding. In an effort to 1) investigate the interplay between MIF and its receptors and 2) to develop MIF inhibitors as antiinflammatory therapeutics, we identified a structurally diverse set of small molecule inhibitors, performed kinetic and structural characterization. The identified inhibitors will be optimized as drug leads in collaboration with Dr. William Jorgensen (Yale Chemistry Department). Furthermore, ones with good pharmacological properties in vitro will be subject to pharmacokinetics and tested for therapeutic effect in a murine model of rheumatoid arthritis. Outcomes of this proposed research will allow us to better understand MIF action to its receptors and also will provide potential drug leads for the treatment of inflammatory diseases.

Public Health Relevance

Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine containing both catalytic and immunological activity, when hyperactive, responsible for inflammatory diseases such as rheumatoid arthritis, lupus, and atherosclerosis. The catalytic site is important to retain immunological activity via interaction with an invariant chain CD74 and G-protein coupled receptors CXCR2 and CXCR4. This proposal seeks to effectively regulate MIF-receptor interaction as well as develop promising antiinflammatory drug leads.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Scientist Development Award - Research & Training (K01)
Project #
1K01AR060300-01
Application #
8029172
Study Section
Special Emphasis Panel (ZAR1-EHB (M1))
Program Officer
Mao, Su-Yau
Project Start
2011-01-15
Project End
2015-12-31
Budget Start
2011-01-15
Budget End
2011-12-31
Support Year
1
Fiscal Year
2011
Total Cost
$127,710
Indirect Cost
Name
Yale University
Department
Pharmacology
Type
Schools of Medicine
DUNS #
043207562
City
New Haven
State
CT
Country
United States
Zip Code
06520
Singh, Abhay Kumar; Pantouris, Georgios; Borosch, Sebastian et al. (2017) Structural basis for decreased induction of class IB PI3-kinases expression by MIF inhibitors. J Cell Mol Med 21:142-153
Evans, Ann E; Tripathi, Abhishek; LaPorte, Heather M et al. (2016) New Insights into Mechanisms and Functions of Chemokine (C-X-C Motif) Receptor 4 Heteromerization in Vascular Smooth Muscle. Int J Mol Sci 17:
Pantouris, Georgios; Syed, Mansoor Ali; Fan, Chengpeng et al. (2015) An Analysis of MIF Structural Features that Control Functional Activation of CD74. Chem Biol 22:1197-205
Xu, Yuexin; Hyun, Young-Min; Lim, Kihong et al. (2014) Optogenetic control of chemokine receptor signal and T-cell migration. Proc Natl Acad Sci U S A 111:6371-6
Cho, Yoonsang; Baldán, Angel (2013) Quest for new biomarkers in atherosclerosis. Mo Med 110:325-30
Cho, Yoonsang; Lolis, Elias (2011) When anti-CCR2 treatment for arthritis strikes out. Arthritis Rheum 63:23-5
Cho, Yoonsang; Vermeire, Jon J; Merkel, Jane S et al. (2011) Drug repositioning and pharmacophore identification in the discovery of hookworm MIF inhibitors. Chem Biol 18:1089-101
Choi, Murim; Scholl, Ute I; Yue, Peng et al. (2011) K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science 331:768-72