Multiple lines of evidence point to the importance of genetic risk factors in the development of cardiovascular disease (CVD). Recent genome-wide association studies (GWAS) have been successful in identifying common variants influencing CVD and its risk factors, but these variants explain only a small portion of the total heritable rik. Rare, functional variants (like those found in the coding, or exonic, regions of the genome) may explain additional heritability. The overall objective of this career development proposal is to identify exonic variants associated with sub-clinical CVD traits. We will perform these studies in the Old Order Amish (OOA), a population that is uniquely suited for this approach because rare, exonic variants that entered the population on a single chromosome are likely to be present in multiple individuals due to genetic drift and therefore easier to find than in the outbred Caucasian populations. To identify these rare variants, we will identify exonic variants in OOA individuals first, through the use of an exome genotyping chip and second, by using sequencing data. We will then test these variants for association with sub-clinical CVD traits and extend our analysis to non-Amish subjects. After identifying variants of interest, we will conduct genotype-directed participant recruitment to further characterize sub-clinical CVD traits in variant carrier. This research plan was designed to complement my training objectives which are to receive additional training in: 1) cardiovascular disease epidemiology, 2) statistical methods relevant to next generation sequencing methodologies and mixed model development and 3) patient-oriented clinical research. This K01 application will promote my career development by providing protected time to learn the targeted mentored skills and will facilitate my transition ino an independent investigator in the field of cardiovascular disease genetic epidemiology.

Public Health Relevance

The overall goal of this career development award is to identify and characterize new genetic variants that influence susceptibility to cardiovascular disease (CVD). The proposed research will lead to the discovery of new CVD genes and improve understanding of the biology underlying CVD susceptibility which may ultimately provide new targets for prevention and treatment. CVD represents an enormous public health burden and these types of advances have the potential to improve our understanding of the disease process and impact the health of millions of individuals.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Scientist Development Award - Research & Training (K01)
Project #
5K01HL116770-03
Application #
8883256
Study Section
Special Emphasis Panel (ZHL1)
Program Officer
Papanicolaou, George
Project Start
2013-08-01
Project End
2016-07-31
Budget Start
2015-08-01
Budget End
2016-07-31
Support Year
3
Fiscal Year
2015
Total Cost
Indirect Cost
Name
University of Maryland Baltimore
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
188435911
City
Baltimore
State
MD
Country
United States
Zip Code
21201
Tise, Christina G; Anforth, Leslie E; Zhou, Albert E et al. (2017) Sex-specific effects of serum sulfate level and SLC13A1 nonsense variants on DHEA homeostasis. Mol Genet Metab Rep 10:84-91
Griffith, Kathleen A; Zhu, Shijun; Johantgen, Meg et al. (2017) Oxaliplatin-Induced Peripheral Neuropathy and Identification of Unique Severity Groups in Colorectal Cancer. J Pain Symptom Manage 54:701-706.e1
Yerges-Armstrong, Laura M; Chai, Sumbul; O'Connell, Jeffery R et al. (2016) Gene Expression Differences Between Offspring of Long-Lived Individuals and Controls in Candidate Longevity Regions: Evidence for PAPSS2 as a Longevity Gene. J Gerontol A Biol Sci Med Sci 71:1295-9
Bozzi, Laura M; Mitchell, Braxton D; Lewis, Joshua P et al. (2016) The Pharmacogenomics of Anti-Platelet Intervention (PAPI) Study: Variation in Platelet Response to Clopidogrel and Aspirin. Curr Vasc Pharmacol 14:116-24
Tise, Christina G; Perry, James A; Anforth, Leslie E et al. (2016) From Genotype to Phenotype: Nonsense Variants in SLC13A1 Are Associated with Decreased Serum Sulfate and Increased Serum Aminotransferases. G3 (Bethesda) 6:2909-18
O'Hare, Elizabeth A; Yerges-Armstrong, Laura M; Perry, James A et al. (2016) Assignment of Functional Relevance to Genes at Type 2 Diabetes-Associated Loci Through Investigation of ?-Cell Mass Deficits. Mol Endocrinol 30:429-45
Shungin, Dmitry (see original citation for additional authors) (2015) New genetic loci link adipose and insulin biology to body fat distribution. Nature 518:187-196
Ellero-Simatos, Sandrine; Beitelshees, Amber L; Lewis, Joshua P et al. (2015) Oxylipid Profile of Low-Dose Aspirin Exposure: A Pharmacometabolomics Study. J Am Heart Assoc 4:e002203
Locke, Adam E (see original citation for additional authors) (2015) Genetic studies of body mass index yield new insights for obesity biology. Nature 518:197-206
Day, Felix R (see original citation for additional authors) (2015) Large-scale genomic analyses link reproductive aging to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair. Nat Genet 47:1294-1303

Showing the most recent 10 out of 11 publications