This proposal describes a five-year career development plan for acquiring critical skills for developing mouse genetic models and for applying state of the art stable isotope techniques to understand complex metabolic pathways. Dr. Brendan Lee, a recognized leader in the field of genetics, will mentor the PI's scientific development. An advisory committee of highly regarded scientists will provide guidance for this project as well as career advice. The proposed training in the field of genetics will complement the candidate's previous training and experience which includes a veterinary degree, masters and doctoral degrees in animal nutrition and post doctoral training in nutritional physiology and metabolism. The research and training will provide the basis of the PI's independent research program as well as generate resources that will be widely used in the field of nitric oxide (NO) biology and nitrogen metabolism. NO is a biological messenger molecule involved in many physiological and pathophysiological processes. L-arginine (Arg) is the precursor for NO synthesis and, in certain conditions (growth, pregnancy, sepsis) its availability seems to limit NO production. The intracellular recycling of citrulline, a co-product in the synthesis of NO, can provide Arg to sustain NO production. Despite the importance of this pathway, no determinations of intracellular recycling of citrulline in vivo have been conducted. In light of the importance of NO production during sepsis, an endotoxin model of sepsis will be used to investigate Arg availability, intracellular citrulline recycling and NO production utilizing stable isotopes and established and tissue-specific conditional mutants.
The specific aims of the proposed research are 1) To quantify nitric oxide production in Arg deficient and hyperargininemic mice in fasted and fed condition, 2) To quantify the effect of endotoxin challenge in the production of NO by Arg deficient and hyperargininemic mice and to evaluate Arg and citrulline supplementation and 3) To develop a novel conditional mouse mutant in which intracellular recycling of citrulline is impeded and to quantify its NO production. Together these studies will elucidate the role of intracellular citrulline recycling in sustaining NO production, both during basal conditions and when NO production is increased. Identifying in which physiological and pathophysiological conditions Arg becomes limiting for NO synthesis, could lead to better defined therapeutic targets and more useful supplementation strategies.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Research Scientist Development Award - Research & Training (K01)
Project #
5K01RR024173-05
Application #
8105211
Study Section
National Center for Research Resources Initial Review Group (RIRG)
Program Officer
Contreras, Miguel A
Project Start
2007-07-06
Project End
2012-06-30
Budget Start
2011-07-01
Budget End
2012-06-30
Support Year
5
Fiscal Year
2011
Total Cost
$122,850
Indirect Cost
Name
Baylor College of Medicine
Department
Pediatrics
Type
Schools of Medicine
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
Marini, Juan C; Didelija, Inka C; Fiorotto, Marta L (2014) Extrarenal citrulline disposal in mice with impaired renal function. Am J Physiol Renal Physiol 307:F660-5
Marini, Juan C; Stoll, Barbara; Didelija, Inka Cajo et al. (2012) De novo synthesis is the main source of ornithine for citrulline production in neonatal pigs. Am J Physiol Endocrinol Metab 303:E1348-53
Nagamani, Sandesh C S; Campeau, Philippe M; Shchelochkov, Oleg A et al. (2012) Nitric-oxide supplementation for treatment of long-term complications in argininosuccinic aciduria. Am J Hum Genet 90:836-46
Nagamani, Sandesh C S; Shchelochkov, Oleg A; Mullins, Mary A et al. (2012) A randomized controlled trial to evaluate the effects of high-dose versus low-dose of arginine therapy on hepatic function tests in argininosuccinic aciduria. Mol Genet Metab 107:315-21
Marini, Juan C (2012) Arginine and ornithine are the main precursors for citrulline synthesis in mice. J Nutr 142:572-80
Marini, Juan C; Lanpher, Brendan C; Scaglia, Fernando et al. (2011) Phenylbutyrate improves nitrogen disposal via an alternative pathway without eliciting an increase in protein breakdown and catabolism in control and ornithine transcarbamylase-deficient patients. Am J Clin Nutr 93:1248-54
Marini, Juan C; Keller, Bettina; Didelija, Inka Cajo et al. (2011) Enteral arginase II provides ornithine for citrulline synthesis. Am J Physiol Endocrinol Metab 300:E188-94
Erez, Ayelet; Nagamani, Sandesh C S; Shchelochkov, Oleg A et al. (2011) Requirement of argininosuccinate lyase for systemic nitric oxide production. Nat Med 17:1619-26
Marini, Juan C (2011) Quantitative analysis of 15N-labeled positional isomers of glutamine and citrulline via electrospray ionization tandem mass spectrometry of their dansyl derivatives. Rapid Commun Mass Spectrom 25:1291-6
Marini, Juan C; Didelija, Inka Cajo; Castillo, Leticia et al. (2010) Plasma arginine and ornithine are the main citrulline precursors in mice infused with arginine-free diets. J Nutr 140:1432-7

Showing the most recent 10 out of 11 publications