Addiction is a chronic relapsing disorder. Despite extended abstinence, addicts may experience intense craving in response to drug re-exposure, cues or stress. How do strong cravings re-emerge and what are the neurobiological triggers? Nucleus accumbens (NAc) is a key target of addictive drugs in the mammalian brain. Animal models implicate NAc in enduring vulnerability to reinstatement of drug seeking. Although reinstatement involves plasticity in NAc AMPA-type glutamate receptors (AMPARs), the identity of this plasticity is unclear. Combining rodent reinstatement models with NAc whole-cell recordings in an ex vivo preparation, we identified a putative neural substrate for relapse. During cocaine abstinence, a cocaine prime, in vivo or in vitro, induces AMPAR long-term depression (""""""""re-exposure LTD""""""""), indicating that NAc AMPAR plasticity in response to environmental stimuli during abstinence is highly dynamic. We hypothesize that re- exposure LTD provides a synaptic gateway for reinstatement. To test this, we will directly measure and manipulate NAc AMPAR plasticity in drug-, cue- and stress-primed reinstatement and incubation models. In addition, """"""""priming in a dish"""""""" gives us a tractable model system to study molecular mechanisms of reinstatement-linked plasticity. We hypothesize that """"""""propping up"""""""" NAc AMPAR function during abstinence may be a useful tool in combating relapse.
The aim of this K02 proposal is to provide an opportunity for career development and training in state-of-the-art research methods to support our program studying the neurobiology of addiction relapse. Specifically, I plan to develop expertise in two areas: 1) the use of optogenetics as a means to probe pathway-specific plasticity in neural reward circuits and 2) """"""""gold standard"""""""" preclinical addiction relapse models in mice. This expertise will directly enhance my current R01-funded research described above. Furthermore, this opportunity to stay abreast of new approaches for modeling human diseases in experimentally tractable species and for measuring and manipulating neural circuit plasticity is critical for long-term success in my research field.

Public Health Relevance

Using a combination of rodent behavioral models and advanced cellular electrophysiological techniques, my lab will investigate the relationship between synaptic plasticity and drug relapse. My proposed career development training includes learning state-of-the-art behavioral and optogenetics techniques to augment our R01-funded research. We expect our studies to inform new strategies for relapse prevention and treatment.

National Institute of Health (NIH)
National Institute on Drug Abuse (NIDA)
Research Scientist Development Award - Research (K02)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-IFCN-C (02))
Program Officer
Volman, Susan
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Minnesota Twin Cities
Schools of Medicine
United States
Zip Code
Sweis, Brian M; Redish, A David; Thomas, Mark J (2018) Prolonged abstinence from cocaine or morphine disrupts separable valuations during decision conflict. Nat Commun 9:2521
Ebner, Stephanie R; Larson, Erin B; Hearing, Matthew C et al. (2018) Extinction and Reinstatement of Cocaine-seeking in Self-administering Mice is Associated with Bidirectional AMPAR-mediated Plasticity in the Nucleus Accumbens Shell. Neuroscience 384:340-349
Ingebretson, Anna E; Hearing, Matthew C; Huffington, Ethan D et al. (2018) Endogenous dopamine and endocannabinoid signaling mediate cocaine-induced reversal of AMPAR synaptic potentiation in the nucleus accumbens shell. Neuropharmacology 131:154-165
Sweis, Brian M; Abram, Samantha V; Schmidt, Brandy J et al. (2018) Sensitivity to ""sunk costs"" in mice, rats, and humans. Science 361:178-181
Sweis, Brian M; Thomas, Mark J; Redish, A David (2018) Mice learn to avoid regret. PLoS Biol 16:e2005853
Sweis, Brian M; Larson, Erin B; Redish, A David et al. (2018) Altering gain of the infralimbic-to-accumbens shell circuit alters economically dissociable decision-making algorithms. Proc Natl Acad Sci U S A 115:E6347-E6355
Jedynak, Jakub; Hearing, Matthew; Ingebretson, Anna et al. (2016) Cocaine and Amphetamine Induce Overlapping but Distinct Patterns of AMPAR Plasticity in Nucleus Accumbens Medium Spiny Neurons. Neuropsychopharmacology 41:464-76
Hearing, Matthew C; Jedynak, Jakub; Ebner, Stephanie R et al. (2016) Reversal of morphine-induced cell-type-specific synaptic plasticity in the nucleus accumbens shell blocks reinstatement. Proc Natl Acad Sci U S A 113:757-62
Smith, Laura N; Jedynak, Jakub P; Fontenot, Miles R et al. (2014) Fragile X mental retardation protein regulates synaptic and behavioral plasticity to repeated cocaine administration. Neuron 82:645-58