The catecholamine dopamine (DA) plays a key role in the regulation of cognitive, emotional, and behavioral functions. Abnormalities in its regulation have been implicated in drug abuse as well as several psychiatric and neurological disorders. DA exerts it actions at D2-like and D1-like receptors, members of the G protein-coupled receptor (GPCR) family. DA reuptake by the DA transporter (DAT) is a principal mechanism for terminating dopaminergic transmission, and this protein is the primary molecular target of amphetamine, cocaine, and other psychostimulants. The Javitch laboratory studies structure-function relationships and mechanisms of regulation of neurotransmitter transporters and related bacterial transporters, as well as mechanisms of dopamine receptor oligomerization and function. His long-term research goals are to: 1) Understand the structural bases of agonist and antagonist binding and specificity in G protein-coupled receptors, with a current focus on DA and opioid receptors. 2) Determine how agonist binding is transduced into G-protein activation and arrestin recruitment and signaling. 3) Determine the structural bases of substrate translocation and inhibitor binding to neurotransmitter transporters and the dynamics associated with transport using biophysical and structural approaches in parallel with computational analysis. 4) Determine the mechanistic bases of AMPH-induced DA efflux and the role of regulation of these processes in sensitization and substance abuse. The K Award enables the candidate to devote focused effort to the exploration of new approaches, novel systems and various multi-disciplinary methods and collaborations aimed at one of the central goals of the research program in the laboratory - the mechanisms of drugs of abuse. The candidate's laboratory is pursuing membrane protein crystallography and electron paramagnetic resonance &single molecule fluorescence spectroscopy of bacterial homologs of neurotransmitter transporters. This work is now being extended to single molecule imaging of receptors in living cells. The lab is also pursuing work in genetically modified flies and mice as model systems to probe molecular and mechanistic insights in a physiological background. These new approaches are being developed and used to maintain the candidate's research at the leading edge of the field of molecular mechanisms of drug abuse and actions of antipsychotic drugs. The support of the K05 Award would play an essential role in the candidate's continued growth by giving him the flexibility to focus on expanding his research methodologies and to fuse his own professional growth with that of his research program as well as extensive mentorship of his trainees and junior faculty.

Public Health Relevance

This K05 Senior Scientist Award would support the continued career development and mentorship activities of an established Professor whose laboratory focuses on understanding the structure, function, and regulation of receptors and transporters and their role in the pathophysiology and potential therapeutics of drug abuse.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Research Scientist Award (K05)
Project #
2K05DA022413-06
Application #
8384603
Study Section
Human Development Research Subcommittee (NIDA)
Program Officer
Satterlee, John S
Project Start
2007-09-01
Project End
2017-08-31
Budget Start
2012-09-01
Budget End
2013-08-31
Support Year
6
Fiscal Year
2012
Total Cost
$129,568
Indirect Cost
$9,598
Name
Columbia University (N.Y.)
Department
Psychiatry
Type
Schools of Medicine
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Niswender, Colleen M; Jones, Carrie K; Lin, Xin et al. (2016) Development and Antiparkinsonian Activity of VU0418506, a Selective Positive Allosteric Modulator of Metabotropic Glutamate Receptor 4 Homomers without Activity at mGlu2/4 Heteromers. ACS Chem Neurosci 7:1201-11
Khelashvili, George; Schmidt, Solveig Gaarde; Shi, Lei et al. (2016) Conformational Dynamics on the Extracellular Side of LeuT Controlled by Na+ and K+ Ions and the Protonation State of Glu290. J Biol Chem 291:19786-99
Freyberg, Zachary; Sonders, Mark S; Aguilar, Jenny I et al. (2016) Mechanisms of amphetamine action illuminated through optical monitoring of dopamine synaptic vesicles in Drosophila brain. Nat Commun 7:10652
LeVine, Michael V; Khelashvili, George; Shi, Lei et al. (2016) Role of Annular Lipids in the Functional Properties of Leucine Transporter LeuT Proteomicelles. Biochemistry 55:850-9
Farino, Zachary J; Morgenstern, Travis J; Vallaghe, Julie et al. (2016) Development of a Rapid Insulin Assay by Homogenous Time-Resolved Fluorescence. PLoS One 11:e0148684
DeLorenzo, Christine; Gallezot, Jean-Dominique; Gardus, John et al. (2016) In vivo variation in same-day estimates of metabotropic glutamate receptor subtype 5 binding using [11C]ABP688 and [18F]FPEB. J Cereb Blood Flow Metab :
Zou, Mu-Fa; Keck, Thomas M; Kumar, Vivek et al. (2016) Novel Analogues of (R)-5-(Methylamino)-5,6-dihydro-4H-imidazo[4,5,1-ij]quinolin-2(1H)-one (Sumanirole) Provide Clues to Dopamine D2/D3 Receptor Agonist Selectivity. J Med Chem 59:2973-88
Klein Herenbrink, Carmen; Sykes, David A; Donthamsetti, Prashant et al. (2016) The role of kinetic context in apparent biased agonism at GPCRs. Nat Commun 7:10842
Kruegel, Andrew C; Gassaway, Madalee M; Kapoor, Abhijeet et al. (2016) Synthetic and Receptor Signaling Explorations of the Mitragyna Alkaloids: Mitragynine as an Atypical Molecular Framework for Opioid Receptor Modulators. J Am Chem Soc 138:6754-64
Frederick, A L; Yano, H; Trifilieff, P et al. (2015) Evidence against dopamine D1/D2 receptor heteromers. Mol Psychiatry 20:1373-85

Showing the most recent 10 out of 84 publications