This application outlines a 5 year plan to train the candidate for an academic career investigating the pathogenesis of hepatitis C virus (HCV) infection and mechanism of drug resistance. Dr. Wang has completed residency training in Internal Medicine at Yale University and a Clinical Fellowship in Infectious Diseases at University of Pennsylvania. He has a strong background in mechanistic enzymology, having received a Ph.D. in biochemistry under Dr. Charles Grubmeyer at Temple University, and is now working in the laboratory of his sponsor, Dr. Frederic Bushman, studying the function of lentiviral vectors in gene therapy patients using DMA bar coding and pyrosequencing. Dr. Wang has established a comprehensive research and training program so that he can gain the expertise to independently attack questions of HCV pathogenesis and resistance. Dr. Bushman, a world authority in the field of virology, and Dr. Kyong-Mi Chang, an expert in HCV pathogenesis, will jointly mentor the candidate's scientific development. An advisory board of prominent scientists and clinicians will mentor his career development. HCV is a leading cause of chronic liver disease in the U.S. The only FDA approved treatment using interferon is often ineffective, yet the basic mechanisms of resistance are largely unknown. Several compounds targeting viral-encoded enzymes are currently in clinical development. However, their use will almost certainly be complicated by the highly diverse viral populations in vivo, which may result in complex drug resistance pathways. Recently, the application of genome sequencing techniques to such problems in viral resistance has allowed mass identification of viral variants. In published work, we have utilized DNA bar coding and pyrosequencing to identify rare drug resistant mutations in HIV and to monitor locations of retroviral integration sites in vivo. We will combine these powerful tools with bioinformatics and a variety of molecular techniques to advance understanding of HCV evolution and resistance in vivo. We propose the following Aims: 1) establish methods for efficient amplification and high-throughput pyrosequencing of HCV;2) investigate the selective pressures on viral populations resulting from interferon therapy;3) define the population structure of HCV. The proposed in-depth laboratory and didactic training will guide the candidate in becoming an independent investigator in viral pathogenesis and resistance.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Clinical Investigator Award (CIA) (K08)
Project #
Application #
Study Section
Microbiology and Infectious Diseases B Subcommittee (MID)
Program Officer
Koshy, Rajen
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Florida
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Liu, Lin; Nardo, David; Li, Eric et al. (2016) CD4+ T-cell recovery with suppressive ART-induced rapid sequence evolution in hepatitis C virus envelope but not NS3. AIDS 30:691-700
Antharam, Vijay C; McEwen, Daniel C; Garrett, Timothy J et al. (2016) An Integrated Metabolomic and Microbiome Analysis Identified Specific Gut Microbiota Associated with Fecal Cholesterol and Coprostanol in Clostridium difficile Infection. PLoS One 11:e0148824
Kirst, Mariana E; Li, Eric C; Alfant, Barnett et al. (2015) Dysbiosis and alterations in predicted functions of the subgingival microbiome in chronic periodontitis. Appl Environ Microbiol 81:783-93
Antharam, Vijay C; Li, Eric C; Ishmael, Arif et al. (2013) Intestinal dysbiosis and depletion of butyrogenic bacteria in Clostridium difficile infection and nosocomial diarrhea. J Clin Microbiol 51:2884-92
Kirst, Mariana E; Li, Eric C; Wang, Cindy X et al. (2013) Deep sequencing analysis of HCV NS3 resistance-associated variants and mutation linkage in liver transplant recipients. PLoS One 8:e69698
Wang, Gary P; Sherrill-Mix, Scott A; Chang, Kyong-Mi et al. (2010) Hepatitis C virus transmission bottlenecks analyzed by deep sequencing. J Virol 84:6218-28