This proposal describes a five year career development program whose goal is to prepare Dr. Julie Zikherman for a career as an independent investigator. This program will build on Dr. Zikherman's experience in clinical rheumatology, basic developmental biology and basic immunology in order to expand an emerging research program and provide her with further expertise in the design and conduct of cellular and molecular immunology research. The long-term goal is to establish an independent laboratory dedicated to the study of basic mechanisms of autoimmune disease pathogenesis, with a focus on how antigen receptor signaling can establish and subvert immune tolerance. The central guidance and training environment for this project will be provided by the mentor, Dr. Art Weiss, Engleman Distinguished Professor of Medicine, and Division Chief of Rheumatology at UCSF, as well as an expert in T cell receptor signaling. The training plan includes formal course work and didactic training through attendance of seminar series, journal clubs, UCSF retreats and scientific meetings, as well as guidance by an advisory committee of established scientists, and a research program that will provide additional technical training along with new directions for independent investigation. The studies proposed in this grant are intended to elucidate how altered T cell receptor signaling can subvert mechanisms of central tolerance and produce autoimmunity in humans. In her preliminary data, Dr. Zikherman has generated an allelic series of mice expressing distinct levels of CD45, and demonstrated that varying CD45 dose produces stable titration of TCR signaling intensity as well as quantitative changes in thymic output. In the research proposal, Dr. Zikherman will take advantage of this novel system to study how titration of TCR signaling intensity regulates thymic cell fate, transcriptional machinery and ultimately functional T cell repertoire. In the first part of the proposal, Dr. Zikherman will use genetic approaches and bone marrow chimeras to define the regulation of positive and negative selection in the allelic series. In the second part she will characterize the molecular phenotype of allelic series thymocytes by defining expression of key transcriptional regulators of positive selection. In the final part of the proposal, Dr. Zikherman will capitalize on the ability to track individual autoreactive cells in the context of the Aire-/- model of organ-specific autoimmunity to study how TCR signaling affects functional T cell repertoire. Together, these experiments will serve to characterize the cellular, molecular, and functional consequences of altered TCR signaling during T cell development. These studies will illuminate the mechanisms by which altered TCR signaling undermines central tolerance to produce disease. In addition to addressing the questions posed in this research proposal, the studies outlined above will serve as a foundation for future work that will enable Dr. Zikherman to become an independent investigator.

Public Health Relevance

Autoimmune diseases constitute a broad range of chronic illnesses that cause significant morbidity and mortality in the US, including diseases as seemingly varied as rheumatoid arthritis, type 1 diabetes, celiac disease, and myasthenia gravis. Shared genetic risk factors among these diseases suggest that mechanisms of disease and ultimately treatment strategies might also be shared. Abnormal T cell signaling is among these shared genetic risk factors, and this proposal seeks to explain how such changes in signaling affect T cell development in order to give rise to autoimmunity.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Clinical Investigator Award (CIA) (K08)
Project #
5K08AR059723-02
Application #
8098871
Study Section
Arthritis and Musculoskeletal and Skin Diseases Special Grants Review Committee (AMS)
Program Officer
Mancini, Marie
Project Start
2010-07-01
Project End
2015-06-30
Budget Start
2011-07-01
Budget End
2012-06-30
Support Year
2
Fiscal Year
2011
Total Cost
$119,610
Indirect Cost
Name
University of California San Francisco
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Au-Yeung, Byron B; Smith, Geoffrey Alexander; Mueller, James L et al. (2017) IL-2 Modulates the TCR Signaling Threshold for CD8 but Not CD4 T Cell Proliferation on a Single-Cell Level. J Immunol 198:2445-2456
Mills, Robyn E; Lam, Viola C; Tan, Allison et al. (2015) Unbiased modifier screen reveals that signal strength determines the regulatory role murine TLR9 plays in autoantibody production. J Immunol 194:3675-86
Zikherman, Julie; Au-Yeung, Byron (2015) The role of T cell receptor signaling thresholds in guiding T cell fate decisions. Curr Opin Immunol 33:43-8
Coughlin, Sarah; Noviski, Mark; Mueller, James L et al. (2015) An extracatalytic function of CD45 in B cells is mediated by CD22. Proc Natl Acad Sci U S A 112:E6515-24
Mueller, James; Matloubian, Mehrdad; Zikherman, Julie (2015) Cutting edge: An in vivo reporter reveals active B cell receptor signaling in the germinal center. J Immunol 194:2993-7
Au-Yeung, Byron B; Zikherman, Julie; Mueller, James L et al. (2014) A sharp T-cell antigen receptor signaling threshold for T-cell proliferation. Proc Natl Acad Sci U S A 111:E3679-88
Limnander, Andre; Zikherman, Julie; Lau, Tannia et al. (2014) Protein kinase C? promotes transitional B cell-negative selection and limits proximal B cell receptor signaling to enforce tolerance. Mol Cell Biol 34:1474-85
Mukherjee, Sayak; Zhu, Jing; Zikherman, Julie et al. (2013) Monovalent and multivalent ligation of the B cell receptor exhibit differential dependence upon Syk and Src family kinases. Sci Signal 6:ra1
Zikherman, Julie; Parameswaran, Ramya; Hermiston, Michelle et al. (2013) The structural wedge domain of the receptor-like tyrosine phosphatase CD45 enforces B cell tolerance by regulating substrate specificity. J Immunol 190:2527-35
Tan, Ying Xim; Zikherman, Julie; Weiss, Arthur (2013) Novel tools to dissect the dynamic regulation of TCR signaling by the kinase Csk and the phosphatase CD45. Cold Spring Harb Symp Quant Biol 78:131-139

Showing the most recent 10 out of 14 publications