This proposal described a tailored research training program for the transition from clinical fellow to independent investigator. The principle investigator has a Ph.D. in Cell Regulation, completed a structured residency training program in Pediatrics and has just completed of clinical fellowship training in Pediatric Hematology/Oncology. The proposal described herein will foster a command on microRNA-21's (miR-21) role in the pathogenesis of non-small cell lung cancer (NSCLC). In this regard, Dr. Eric Olson the chairman of Molecular Biology at the University of Texas Southwestern and a world's authority on mouse models of microRNA and disease will serve as an ideal mentor. He has trained numerous post-doctoral fellows in the past and has sponsored previous and current physician scientists. To enhance the training, the program will enlist the expertise of Dr. John Minna, Professor of Internal Medicine and Pharmacology an expert in the molecular basis of lung cancer, Dr. Luis Parada, Chairman of Developmental Biology a premier cancer biologist and mouse geneticist, and Dr. George Lister, Chairman of Pediatrics. Furthermore, this advisory committee will not only provide regular constructive criticism of data, hypotheses, and proposed experiments but invaluable advice regarding career development as an independent and productive physician scientist. It is also expected that the members of the advisory committee will be invaluable in offering their expertise and unique reagents to foster the research plan. The research will focus on elucidating the molecular mechanisms underlying the role of miR-21 in non-small cell lung cancer. Recent work in the Olson laboratory has established that miR-21 actively participates in the pathogenesis of in a mouse model of NSCLC. MiR-21 decreases the expression of both pro-apoptotic genes and negative regulators of the Ras pathway thus facilitating tumorigenesis. The proposed experiments will build on this observation utilizing human bronchial epithelial cells and lung adenocarcinoma cell lines supported by transgenic mouse models to determine the importance of miR-21 in lung cancer and the mechanism through which miR-21 contributes to non-small cell lung cancer development.
The specific aims i nclude: 1) Determine oncogenic potential of miR-21 in immortalized human bronchial epithelial cells, 2) Define the mechanisms through which miR-21 promotes non-small cell lung cancer pathogenesis, 3) Explore miR-21 inhibition as therapy for NSCLC. The combination of the Molecular Biology Department and the NCI-Cancer Center at UT Southwestern provides an ideal setting for training physician-scientist by incorporating expertise from diverse resources into customized programs. This environment will provide the ideal interdisciplinary setting not only to conduct the proposed experiments but to develop as an independent clinician scientist from which an academic career can be constructed.

Public Health Relevance

Lung cancer is the most common form of cancer and the leading cause of cancer-related death worldwide. A newly discovered gene, microRNA-21, correlates with poor survival in lung cancer patients. Through this work we will discover the mechanism through which microRNA-21 acts in lung cancer and explore a novel therapy inhibiting microRNA-21 function in a mouse model of lung cancer. The written critiques and criteria scores of individual reviewers are provided in essentially unedited form in the Critique section below. Please note that these critiques and criteria scores were prepared prior to the meeting and may not have been revised subsequent to any discussions at the review meeting. The Resume and Summary of Discussion section above summarizes the final opinions of the committee.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Clinical Investigator Award (CIA) (K08)
Project #
Application #
Study Section
Subcommittee B - Comprehensiveness (NCI)
Program Officer
Perkins, Susan N
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
St. Jude Children's Research Hospital
United States
Zip Code
Hanna, Jason A; Drummond, Catherine J; Garcia, Matthew R et al. (2017) Biallelic Dicer1 Loss Mediated by aP2-Cre Drives Angiosarcoma. Cancer Res 77:6109-6118
Hanna, J A; Garcia, M R; Go, J C et al. (2016) PAX7 is a required target for microRNA-206-induced differentiation of fusion-negative rhabdomyosarcoma. Cell Death Dis 7:e2256
Lakhia, Ronak; Hajarnis, Sachin; Williams, Darren et al. (2016) MicroRNA-21 Aggravates Cyst Growth in a Model of Polycystic Kidney Disease. J Am Soc Nephrol 27:2319-30
Kashi, Venkatesh P; Hatley, Mark E; Galindo, Rene L (2015) Probing for a deeper understanding of rhabdomyosarcoma: insights from complementary model systems. Nat Rev Cancer 15:426-39
Chen, Xiang; Stewart, Elizabeth; Shelat, Anang A et al. (2013) Targeting oxidative stress in embryonal rhabdomyosarcoma. Cancer Cell 24:710-24
Hatley, Mark E; Tang, Wei; Garcia, Matthew R et al. (2012) A mouse model of rhabdomyosarcoma originating from the adipocyte lineage. Cancer Cell 22:536-46