The retina converts light into electrical signals through a series of biochemical steps collectively referred to as phototransduction. Via the optic nerve, these signals reach the brain, where visual perception occurs. Rod and cone photoreceptor cells in the retina respond to light throughout our lives because they continuously regenerate visual (retinoid) cycle proteins and a light-sensitive chromophore. Disabling mutations in the genes encoding these proteins are among the main causes of blinding diseases in humans and other factors affect vision as well. Studies in mice indicate that age-related decreases in rod cell function cannot be explained by rod cell loss, abnormal retinal plasticity or any signs of retinal disease. Based on experiments in mice, age-related deterioration of dark adaptation is ameliorated by artificial cis-retinoid treatment. This finding probably relates to the age-related decline in human vision manifested by dramatic slowing of rod-mediated dark adaptation attributable to delayed rhodopsin regeneration. In addition, anomalous reactions in the retinoid cycle can cause progressive retinal changes similar to human age-related retinal degeneration, which are prevented by retinoid cycle inhibitor. So the long-term objective of our research is to elucidate the molecular basis of age related rod and cone photoreceptor cell dysfunction and develop rational pharmacological interventions to prevent this pathology. We propose three thematically linked specific aims to address this issue: (1) Characterize age-related retinal dysfunction in A/J mice, which exhibit early onset, progressive age-related retinal dysfunction similar to aging humans. (2) Assess age-related retinal dysfunction in A/J mice treated with either 9-cis-retinoids or retinylamine or combination of both drugs. (3) Identify A/J mouse chromosomes containing causative genes for age-related retinal dysfunction.

Public Health Relevance

A/J mice exhibit spontaneous early-onset progressive age-related retinal dysfunction similar to aging humans, and are therefore an excellent model to study the underlying mechanisms of ARD. We will use a simplified genetic approach to determine which chromosome(s) in the A/J mouse are likely to contribute to this deficit. We also will test the response of these mice to two artificial retinoids that improve other visual disorders by affecting the retinoid (visual) cycle in photoreceptor cells of the retina.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Clinical Investigator Award (CIA) (K08)
Project #
5K08EY019880-04
Application #
8403616
Study Section
Special Emphasis Panel (ZEY1-VSN (10))
Program Officer
Agarwal, Neeraj
Project Start
2010-02-01
Project End
2014-01-31
Budget Start
2013-02-01
Budget End
2014-01-31
Support Year
4
Fiscal Year
2013
Total Cost
$81,000
Indirect Cost
$6,000
Name
Case Western Reserve University
Department
Ophthalmology
Type
Schools of Medicine
DUNS #
077758407
City
Cleveland
State
OH
Country
United States
Zip Code
44106
Kohno, Hideo; Maeda, Tadao; Perusek, Lindsay et al. (2014) CCL3 production by microglial cells modulates disease severity in murine models of retinal degeneration. J Immunol 192:3816-27
Talreja, Deepa; Muraleedharan, Chithra; Gunathilaka, Gayathri et al. (2014) Virulence properties of multidrug resistant ocular isolates of Acinetobacter baumannii. Curr Eye Res 39:695-704
Maeda, Akiko; Palczewska, Grazyna; Golczak, Marcin et al. (2014) Two-photon microscopy reveals early rod photoreceptor cell damage in light-exposed mutant mice. Proc Natl Acad Sci U S A 111:E1428-37
Sawada, Osamu; Perusek, Lindsay; Kohno, Hideo et al. (2014) All-trans-retinal induces Bax activation via DNA damage to mediate retinal cell apoptosis. Exp Eye Res 123:27-36
Maeda, Tadao; Lee, Mee Jee; Palczewska, Grazyna et al. (2013) Retinal pigmented epithelial cells obtained from human induced pluripotent stem cells possess functional visual cycle enzymes in vitro and in vivo. J Biol Chem 288:34484-93
Perusek, Lindsay; Maeda, Tadao (2013) Vitamin A derivatives as treatment options for retinal degenerative diseases. Nutrients 5:2646-66
Zhang, Ning; Kolesnikov, Alexander V; Jastrzebska, Beata et al. (2013) Autosomal recessive retinitis pigmentosa E150K opsin mice exhibit photoreceptor disorganization. J Clin Invest 123:121-37
Chen, Yu; Sawada, Osamu; Kohno, Hideo et al. (2013) Autophagy protects the retina from light-induced degeneration. J Biol Chem 288:7506-18
Mustafi, Debarshi; Kevany, Brian M; Bai, Xiaodong et al. (2013) Evolutionarily conserved long intergenic non-coding RNAs in the eye. Hum Mol Genet 22:2992-3002
Chen, Yu; Palczewska, Grazyna; Mustafi, Debarshi et al. (2013) Systems pharmacology identifies drug targets for Stargardt disease-associated retinal degeneration. J Clin Invest 123:5119-34

Showing the most recent 10 out of 21 publications