This is an application for a career development award to establish the PI with advanced training in molecular physiology in preparation for a career as an independent investigator in the area of sepsis-related organ failure. The PI will investigate the role of the mitochondrial DNA repair (mDNA) enzyme, OGG1 and nuclear coactivators, PGC-11 and its family members, in mtDNA maintenance and biogenesis in a murine Staphylococcus sepsis model. MtDNA is a critical target of oxidative and nitrosative damage from cytokine and chemokine release, and mitochondrial biogenesis is one of the critical repair mechanisms. My overall working hypothesis is that the maintenance of adequate mitochondrial function in sepsis requires nuclear coordination of an integrated program of mtDNA repair and mtDNA replication in order to ensure fidelity of mtDNA transcription and for mitochondrial biogenesis given that sepsis leads to mtDNA damage by reactive oxygen species and reactive nitrogen species. If this mtDNA damage from sepsis exceeds the cell's ability to repair damaged mtDNA, fewer mitochondrial genomes will be available for transcription;this inflammatory insult will decrease the cells'capacity for oxidative phosphorylation. The cell either accommodates to this change in functional mtDNA equilibrium through mitochondrial biogenesis, or the cell will undergo death by either necrosis or apoptosis. Therefore, I hypothesize that enhanced mtDNA repair in sepsis is a prerequisite for mitochondrial biogenesis to avert the energy failure that would lead to organ injury. This hypothesis will be tested with the following specific Aims:
Specific Aim 1 : Understand the role of OGG1 in maintenance of mtDNA copy number during Staph aureus sepsis in mice.
Specific Aim 2 : Identify the critical nuclear co-activator for NRF-1-induced Ogg1 gene expression in gram positive sepsis and sepsis-related inflammation.
Specific Aim 3 : Understand the importance of the AMP-kinase pathway activation in sepsis as it relates to nuclear co-activator function and mtDNA repair enzyme induction. The completion of these Aims will improve our understanding of the role of mtDNA damage and repair in severe sepsis and in protection from organ failure that would lend itself to the development of novel prognostic and therapeutic strategies for host protection.

Public Health Relevance

Sepsis is the 10th leading cause of mortality in the United States. Current strategies to treat sepsis beyond supportive care and antibiotics are limited. Understanding the pathophysiologic processes that lead to sepsis- induced organ dysfunction will ultimately lead to new therapeutic pathways.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Clinical Investigator Award (CIA) (K08)
Project #
1K08GM087429-01A1
Application #
7989562
Study Section
Surgery, Anesthesiology and Trauma Study Section (SAT)
Program Officer
Somers, Scott D
Project Start
2010-09-06
Project End
2015-08-31
Budget Start
2010-09-06
Budget End
2011-08-31
Support Year
1
Fiscal Year
2010
Total Cost
$115,298
Indirect Cost
Name
Duke University
Department
Anesthesiology
Type
Schools of Medicine
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Fierro, Michael A; Bartz, Raquel R (2016) Management of Sedation and Paralysis. Clin Chest Med 37:723-739
Thiele, Robert H; Bartz, Raquel R (2015) Stemming Anginal Pain, Waiting for the Magic Cells. Crit Care Med 43:2256-7
Bartz, Raquel R; Ferreira, Renata G; Schroder, Jacob N et al. (2015) Prolonged pulmonary support after cardiac surgery: incidence, risk factors and outcomes: a retrospective cohort study. J Crit Care 30:940-4
Bartz, Raquel R; Fu, Ping; Suliman, Hagir B et al. (2014) Staphylococcus aureus sepsis induces early renal mitochondrial DNA repair and mitochondrial biogenesis in mice. PLoS One 9:e100912
MacGarvey, Nancy Chou; Suliman, Hagir B; Bartz, Raquel R et al. (2012) Activation of mitochondrial biogenesis by heme oxygenase-1-mediated NF-E2-related factor-2 induction rescues mice from lethal Staphylococcus aureus sepsis. Am J Respir Crit Care Med 185:851-61
Athale, Janhavi; Ulrich, Allison; MacGarvey, Nancy Chou et al. (2012) Nrf2 promotes alveolar mitochondrial biogenesis and resolution of lung injury in Staphylococcus aureus pneumonia in mice. Free Radic Biol Med 53:1584-94
Piantadosi, Claude A; Withers, Crystal M; Bartz, Raquel R et al. (2011) Heme oxygenase-1 couples activation of mitochondrial biogenesis to anti-inflammatory cytokine expression. J Biol Chem 286:16374-85
Bartz, Raquel R; Suliman, Hagir B; Fu, Ping et al. (2011) Staphylococcus aureus sepsis and mitochondrial accrual of the 8-oxoguanine DNA glycosylase DNA repair enzyme in mice. Am J Respir Crit Care Med 183:226-33
Bartz, Raquel R; Piantadosi, Claude A (2010) Clinical review: oxygen as a signaling molecule. Crit Care 14:234
Suliman, Hagir B; Babiker, Abdelwahid; Withers, Crystal M et al. (2010) Nitric oxide synthase-2 regulates mitochondrial Hsp60 chaperone function during bacterial peritonitis in mice. Free Radic Biol Med 48:736-46