This is an application for a K08 award for Dr. Mark McCauley, a cardiologist and cardiac electrophysiologist at Baylor College of Medicine, Houston. Dr. McCauley is establishing himself as a young investigator in clinical and translational research of cardiac arrhythmias. This K08 award will provide Dr. McCauley with the support necessary to accomplish the following goals: 1) to become an expert at the cellular mechanisms of atrial fibrillation (AF); 2) to conduct basic and translational research of the biophysical aspects of AF initiation and maintenance; 3) to implement advanced molecular, genetic, and cellular imaging techniques in studies of human and murine tissues prone to AF; 4) to identify key molecular interactions responsible for atrial stunning in AF; 5) to develop an independent translational research career. To achieve these goals, Dr. McCauley has assembled a mentoring team composed of a primary mentor, Dr. Xander Wehrens, Director of the Cardiovascular Research Institute at Baylor College of Medicine, who conducts basic science research in the mechanisms of cardiac arrhythmias and heart failure, and two collaborating investigators: Dr. James Martin, a scientist who examines the role of genetics in cardiovascular development, and Dr. Na Li, a scientist who examines the role of Ca2+ signaling in AF. AF is a significant contributor to risk of stroke, which is the #5 cause of death in the United States. Long-standing AF leads to atrial stunning, which contributes to stroke in AF. Dr. McCauley's research will focus on the molecular determinants of atrial hypocontractility in AF, with an emphasis on protein phosphatase 1 (PP1), a key regulator of sarcomeric Ca2+ sensitivity and cardiac contractility. Dr. McCauley will determine how PP1 protein subunit interactions affect sarcomere phosphorylation (Aim 1), affect Ca2+ sensitivity and cardiac contractility (Aim 2), and how reversal of pathologic PP1 signaling may improve cardiac contractility in AF (Aim 3). More specifically, in Aim 1, Dr. McCauley will examine PP1 expression, subunit binding, and sarcomere phosphorylation in both human AF tissue (atrial appendage) and in murine atrial cells in vitro.
In Aim 2, he will use Ca2+ imaging and advanced microscopy techniques to examine how alterations in PP1 expression and binding contribute to Ca2+ sensitivity and cardiac contractility.
In Aim 3, he will experimentally modulate regulatory and catalytic PP1 subunit binding in a proven murine AF model to modulate atrial contractility. By examining this important molecular interaction implicated in atrial stunning, Dr. McCauley will seek to determine an important mechanism leading to stroke risk in AF. This research will form the basis for a targeted treatment for AF-mediated hypocontractility, which will form the rationale and preliminary data for an R01 grant application before the end of the K award.

Public Health Relevance

Atrial fibrillation (AF), the most common cardiac arrhythmia, increases a patient's risk of stroke five-fold. Atrial stunning, or reduction in pumping function, s observed in AF and contributes to stroke risk, however the cause of atrial stunning in AF is yet unknown. We will study the mechanisms of atrial stunning in AF to determine the cause and potentially reverse stunning in AF.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Clinical Investigator Award (CIA) (K08)
Project #
1K08HL130587-01
Application #
9013527
Study Section
Special Emphasis Panel (MCBS (OA))
Program Officer
Huang, Li-Shin
Project Start
2016-03-05
Project End
2020-12-31
Budget Start
2016-03-05
Budget End
2016-12-31
Support Year
1
Fiscal Year
2016
Total Cost
$124,353
Indirect Cost
$9,211
Name
University of Illinois at Chicago
Department
Type
Schools of Medicine
DUNS #
098987217
City
Chicago
State
IL
Country
United States
Zip Code
60612
McCauley, Mark D; Darbar, Dawood (2018) Race and Socioeconomic Status Regulate Lifetime Risk of Atrial Fibrillation. Circ Arrhythm Electrophysiol 11:e006584
Darbar, Dawood; McCauley, Mark (2017) The Pharmacogenomics of a Mutation 'Hotspot' for the Short QT Syndrome. JACC Clin Electrophysiol 3:744-746
Quick, Ann P; Wang, Qiongling; Philippen, Leonne E et al. (2017) SPEG (Striated Muscle Preferentially Expressed Protein Kinase) Is Essential for Cardiac Function by Regulating Junctional Membrane Complex Activity. Circ Res 120:110-119
McCauley, Mark; Darbar, Dawood (2017) Germline versus somatic mutations in genetic atrial fibrillation. Heart Rhythm 14:1539-1540
Mazzocchi, G; Sommese, L; Palomeque, J et al. (2016) Phospholamban ablation rescues the enhanced propensity to arrhythmias of mice with CaMKII-constitutive phosphorylation of RyR2 at site S2814. J Physiol 594:3005-30
McCauley, Mark; Vallabhajosyula, Sharath; Darbar, Dawood (2016) Proarrhythmic and Torsadogenic Effects of Potassium Channel Blockers in Patients. Card Electrophysiol Clin 8:481-93
McCauley, Mark D; Patel, Nisarg; Greenberg, Scott J et al. (2016) Fluoroscopy-free Atrial Transseptal Puncture. Eur J Arrhythm Electrophysiol 2:57-61
McCauley, M D; Darbar, D (2016) A new paradigm for predicting risk of Torsades de Pointes during drug development: Commentary on: ""Improved prediction of drug-induced Torsades de Pointes through simulations of dynamics and machine learning algorithms"". Clin Pharmacol Ther 100:324-6