Synaptic degeneration plays a critical role in the cognitive decline of patients with Alzheimer disease (AD). Recent in vitro data suggest that the Amyloid Precursor Protein (APP)-derived peptide, Abeta, drives synaptic degeneration through the activation of signaling pathways that regulate synaptic plasticity;however, in vivo evidence of this is limited. In addition, roles have been proposed for APP and Abeta in neurite pruning and synaptic plasticity outside of the context of disease, however, these hypotheses are similarly difficult to assess in the intact brain. The developing visual cortex offers a unique model in which to test perturbations of synaptic plasticity. In juvenile mice, a critical period of increased synaptic plasticity exists in which the loss of vision from one eye triggers cortical rewiring that results in enhanced responses to visual input from the active eye as well as weakening of responses from the inactive eye in a process termed ocular dominance plasticity (ODP). This process requires pathways involved in adult plasticity, including regulation of NMDA receptor activity and regulation by GABAergic inhibitory circuitry, suggesting that the developing visual system may provide a powerful, tractable model in which to study the effects of Abeta on plasticity in vivo. Preliminary evidence reveals that transgenic mice that express elevated levels of Abeta exhibit a loss of critical period ODP, providing further evidence that exposure to elevated levels of Abeta interferes with synaptic plasticity and normal function. Through biochemical analyses and histological approaches, the mechanism by which this plasticity deficit occurs will be studied. Using this approach, roles for APP and Abeta in normal synaptic plasticity will also be explored. Lastly, adult ODP has been demonstrated in mice, though the process is physiologically distinct and less well characterized. The hypothesis that Abeta accumulation blocks adult ocular dominance plasticity will be tested and the results compared to those obtained during the juvenile period. The goals of this study are to define the role of APP and Abeta in regulating synaptic plasticity, gain insight into the underlying mechanism, and test whether this effect can be pharmacologically modulated- all using a robust, in vivo model of synaptic plasticity. The candidate is an MD/PhD, trained in anatomic pathology and neuropathology, whose long term goal is to study the molecular pathways responsible for the establishment of the functional nervous system and to understand the roles that these pathways play in the decline of function in neurodegenerative disease. During the course of this research sponsored by Dr. Bradley Hyman, MD, PhD, at Massachusetts General Hospital (MGH), the most current genetic, molecular, physiologic imaging and histological approaches will be used to examine the action of APP and Abeta at the synapse. These studies will allow the candidate to acquire the skills necessary to advance to a career as an independent investigator. During the proposed course of mentored scientific training, the candidate will also continue to develop the clinical skills required to become an academic neuropathologist through additional training at MGH.

Public Health Relevance

The research program described in this proposal will provide insight into the nature of the synaptic dysfunction thought to play a critical early role in Alzheimer disease. In addition to studying the effects of the disease process on synaptic function in the intact brain, this approach also provides a novel system in which to test therapeutic approaches that attempt to restore synaptic function. These studies promise to facilitate the identification and validation of potential drug targets and to provide an in vivo system in which to test pharmacologic approaches to treatment, ultimately to aid in the development of new therapies to reduce the burden of Alzheimer disease on patients, families and society.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Clinical Investigator Award (CIA) (K08)
Project #
5K08NS069811-05
Application #
8677980
Study Section
Neurological Sciences Training Initial Review Group (NST)
Program Officer
Corriveau, Roderick A
Project Start
2010-09-15
Project End
2015-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
5
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Massachusetts General Hospital
Department
Type
DUNS #
City
Boston
State
MA
Country
United States
Zip Code
02199
William, Christopher M; Saqran, Lubna; Stern, Matthew A et al. (2017) Activity-Dependent Dysfunction in Visual and Olfactory Sensory Systems in Mouse Models of Down Syndrome. J Neurosci 37:9880-9888
Farrar, Christian T; William, Christopher M; Hudry, Eloise et al. (2014) RNA aptamer probes as optical imaging agents for the detection of amyloid plaques. PLoS One 9:e89901
Khanna, Arjun; Venteicher, Andrew S; Walcott, Brian P et al. (2013) Glioblastoma mimicking an arteriovenous malformation. Front Neurol 4:144
Kim, Taeho; Vidal, George S; Djurisic, Maja et al. (2013) Human LilrB2 is a ?-amyloid receptor and its murine homolog PirB regulates synaptic plasticity in an Alzheimer's model. Science 341:1399-404
de Calignon, Alix; Polydoro, Manuela; Suárez-Calvet, Marc et al. (2012) Propagation of tau pathology in a model of early Alzheimer's disease. Neuron 73:685-97
William, Christopher M; Andermann, Mark L; Goldey, Glenn J et al. (2012) Synaptic plasticity defect following visual deprivation in Alzheimer's disease model transgenic mice. J Neurosci 32:8004-11
Koffie, Robert M; Farrar, Christian T; Saidi, Laiq-Jan et al. (2011) Nanoparticles enhance brain delivery of blood-brain barrier-impermeable probes for in vivo optical and magnetic resonance imaging. Proc Natl Acad Sci U S A 108:18837-42
Fox, Leora M; William, Christopher M; Adamowicz, David H et al. (2011) Soluble tau species, not neurofibrillary aggregates, disrupt neural system integration in a tau transgenic model. J Neuropathol Exp Neurol 70:588-95