The goal of this proposal is to attain support for a new Interdisciplinary Engineering Career Development Center in Movement and Rehabilitation Sciences created by a consortium of leading institutions in the field including Northwestern University, the Rehabilitation Institute of Chicago, University of California Irvine, University of North Carolina, Case Western Reserve University, Marquette University, Stanford University, and University of Delaware. The mission of the proposed program is to develop scholars with engineering and other quantitative backgrounds to become successful rehabilitation scientists in basic, translational and/or clinical research. This would be the only program of its kind to focus on engineering-trained investigators. The PIs believe that these individuals, who already possess strong quantitative, problem-solving, programming, signal analysis and mechatronics skills, are uniquely positioned to make a significant impact on the field of quantitative movement and rehabilitation sciences (MRS) and its translation to rehabilitative care. The proposed career development program seeks to provide scholars with: 1) In-depth understanding of rehabilitation patient-centered clinical problems;2) Career development opportunities and mentoring to broaden their MRS research and training;and 3) Mentoring in translational research to increase the impact of their work. The PIs will accomplish these goals by using a dual mentorship model with a senior engineering faculty member and a senior clinical rehabilitation faculty member. In addition, scholars will participate in sabbatical experiences where they can further their knowledge and research skills in rehabilitation and engineering laboratories. The participating institutions have a long and recognized history in the study of the neurobiology of movement behavior and dysfunction, rehabilitation robotics, sensory-motor neural machine interfaces, and musculoskeletal modeling and dysfunction. Extensive research is being performed in these areas, across the continuum, from basic animal and human studies focused on the control of movement and movement disorders, to the development of novel rehabilitation robotics interventions that address these movement disorders. This impressive array of established research programs will not only provide a fertile ground for the development of engineering scholars in the field of MRS, but will also foster the creation of new interdisciplinary and inter-institutional collaborations that will bring new discoveries to fruition. The PIs intend to supporta total of 4 scholars in year 1 of the career development program, and 8 scholars in subsequent years. The program will provide support for a total of two years for each scholar.

Public Health Relevance

As a result of wars, aging demographics, and the evolving needs of children with developmental and other disabilities, the number of individuals with movement disabilities continues to increase, revealing a dire need for developing more effective and efficient rehabilitation interventions. The proposed program will develop a new generation of movement and rehabilitation engineering scientists who can bridge the gap between the laboratory and the clinic. This program will have an impact on the future of rehabilitative care in the nation.

National Institute of Health (NIH)
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Physician Scientist Award (Program) (PSA) (K12)
Project #
Application #
Study Section
Special Emphasis Panel (ZHD1-RRG-K (52))
Program Officer
Nitkin, Ralph M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Northwestern University at Chicago
Physical Medicine & Rehab
Schools of Medicine
United States
Zip Code
Sturdy, Jordan; Gates, Deanna H; Darter, Benjamin J et al. (2014) Assessing preparative gait adaptations in persons with transtibial amputation in response to repeated medial-lateral perturbations. Gait Posture 39:995-8
Fiedler, Goeran; Slavens, Brooke; Smith, Roger O et al. (2014) Criterion and construct validity of prosthesis-integrated measurement of joint moment data in persons with transtibial amputation. J Appl Biomech 30:431-8
Schnorenberg, Alyssa J; Slavens, Brooke A; Wang, Mei et al. (2014) Biomechanical model for evaluation of pediatric upper extremity joint dynamics during wheelchair mobility. J Biomech 47:269-76
Finley, James M; Statton, Matthew A; Bastian, Amy J (2014) A novel optic flow pattern speeds split-belt locomotor adaptation. J Neurophysiol 111:969-76
Bruhl, Annette Beatrix; Scherpiet, Sigrid; Sulzer, James et al. (2014) Real-time neurofeedback using functional MRI could improve down-regulation of amygdala activity during emotional stimulation: a proof-of-concept study. Brain Topogr 27:138-48
Taylor, Anne Marion; Wu, Jason; Tai, Hwan-Ching et al. (2013) Axonal translation of *-catenin regulates synaptic vesicle dynamics. J Neurosci 33:5584-9