The goal of this proposal is to attain support for a new Interdisciplinary Engineering Career Development Center in Movement and Rehabilitation Sciences created by a consortium of leading institutions in the field including Northwestern University, the Rehabilitation Institute of Chicago, University of California Irvine, University of North Carolina, Case Western Reserve University, Marquette University, Stanford University, and University of Delaware. The mission of the proposed program is to develop scholars with engineering and other quantitative backgrounds to become successful rehabilitation scientists in basic, translational and/or clinical research. This would be the only program of its kind to focus on engineering-trained investigators. The PIs believe that these individuals, who already possess strong quantitative, problem-solving, programming, signal analysis and mechatronics skills, are uniquely positioned to make a significant impact on the field of quantitative movement and rehabilitation sciences (MRS) and its translation to rehabilitative care. The proposed career development program seeks to provide scholars with: 1) In-depth understanding of rehabilitation patient-centered clinical problems;2) Career development opportunities and mentoring to broaden their MRS research and training;and 3) Mentoring in translational research to increase the impact of their work. The PIs will accomplish these goals by using a dual mentorship model with a senior engineering faculty member and a senior clinical rehabilitation faculty member. In addition, scholars will participate in sabbatical experiences where they can further their knowledge and research skills in rehabilitation and engineering laboratories. The participating institutions have a long and recognized history in the study of the neurobiology of movement behavior and dysfunction, rehabilitation robotics, sensory-motor neural machine interfaces, and musculoskeletal modeling and dysfunction. Extensive research is being performed in these areas, across the continuum, from basic animal and human studies focused on the control of movement and movement disorders, to the development of novel rehabilitation robotics interventions that address these movement disorders. This impressive array of established research programs will not only provide a fertile ground for the development of engineering scholars in the field of MRS, but will also foster the creation of new interdisciplinary and inter-institutional collaborations that will bring new discoveries to fruition. The PIs intend to supporta total of 4 scholars in year 1 of the career development program, and 8 scholars in subsequent years. The program will provide support for a total of two years for each scholar.

Public Health Relevance

As a result of wars, aging demographics, and the evolving needs of children with developmental and other disabilities, the number of individuals with movement disabilities continues to increase, revealing a dire need for developing more effective and efficient rehabilitation interventions. The proposed program will develop a new generation of movement and rehabilitation engineering scientists who can bridge the gap between the laboratory and the clinic. This program will have an impact on the future of rehabilitative care in the nation.

National Institute of Health (NIH)
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Physician Scientist Award (Program) (PSA) (K12)
Project #
Application #
Study Section
Special Emphasis Panel (ZHD1)
Program Officer
Nitkin, Ralph M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Northwestern University at Chicago
Physical Medicine & Rehab
Schools of Medicine
United States
Zip Code
Lee, Sabrina S M; Gaebler-Spira, Deborah; Zhang, Li-Qun et al. (2016) Use of shear wave ultrasound elastography to quantify muscle properties in cerebral palsy. Clin Biomech (Bristol, Avon) 31:20-8
Fiedler, Goeran; Slavens, Brooke A; O'Connor, Kristian M et al. (2016) Effects of physical exertion on trans-tibial prosthesis users' ability to accommodate alignment perturbations. Prosthet Orthot Int 40:75-82
Finley, James M; Bastian, Amy J (2016) Associations Between Foot Placement Asymmetries and Metabolic Cost of Transport in Hemiparetic Gait. Neurorehabil Neural Repair :
Gates, Deanna H; Walters, Lisa Smurr; Cowley, Jeffrey et al. (2016) Range of Motion Requirements for Upper-Limb Activities of Daily Living. Am J Occup Ther 70:7001350010p1-7001350010p10
Vigaru, Bogdan; Sulzer, James; Gassert, Roger (2015) Design and Evaluation of a Cable-Driven fMRI-Compatible Haptic Interface to Investigate Precision Grip Control. IEEE Trans Haptics :
Engdahl, Susannah M; Christie, Breanne P; Kelly, Brian et al. (2015) Surveying the interest of individuals with upper limb loss in novel prosthetic control techniques. J Neuroeng Rehabil 12:53
Slavens, Brooke A; Schnorenberg, Alyssa J; Aurit, Christine M et al. (2015) Evaluation of pediatric manual wheelchair mobility using advanced biomechanical methods. Biomed Res Int 2015:634768
Steele, Katherine M; Rozumalski, Adam; Schwartz, Michael H (2015) Muscle synergies and complexity of neuromuscular control during gait in cerebral palsy. Dev Med Child Neurol 57:1176-82
Blefari, Maria L; Sulzer, James; Hepp-Reymond, Marie-Claude et al. (2015) Improvement in precision grip force control with self-modulation of primary motor cortex during motor imagery. Front Behav Neurosci 9:18
Taylor, A M; Menon, S; Gupton, S L (2015) Passive microfluidic chamber for long-term imaging of axon guidance in response to soluble gradients. Lab Chip 15:2781-9

Showing the most recent 10 out of 26 publications