The applicant's objective is to enhance his training in the field of hormonal mechanisms of cardiovascular disease in obesity. Obesity is a state of high adipose-tissue renin-angiotensin system (RAS) activity, hypoadiponectinemia, and vitamin D deficiency. These intertwined metabolic abnormalities contribute to increased cardiovascular risk in obesity. The applicant's prior data support the hypothesis that vitamin D therapy may be an effective strategy to lower adipose-tissue RAS activity and raise circulating adiponectin in obesity;these favorable metabolic profiles could reduce cardiovascular risk in obesity. The applicant proposes to study 60 obese human subjects in a well-controlled physiologic experimental protocol that is designed to test whether the active vitamin D metabolite, calcitriol, can modulate adipose-tissue RAS activity and influence circulating adiponectin levels in obesity.
The specific aims of this project are designed to test: 1) whether calcitriol interacts with the vitamin D receptor to reduce adipose-tissue renin expression in obesity;and 2) whether calcitriol therapy raises circulating adiponectin in obesity. Although each aim addresses a specific relevant metabolic question, both utilize the same study population and core study design to maximize efficiency and resources. Study subjects will be randomized to calcitriol therapy or placebo for two weeks.
Aim 1 will evaluate adipose-tissue renin expression before and after intervention, and whether the effect of calcitriol is influenced by genetic variation at Fok1: a functional polymorphism of the vitamin D receptor gene.
Aim 2 will assess circulating adiponectin before and after intervention. The demonstration that vitamin D therapy modulates the expression of hormones that mediate vascular disease (the RAS and adiponectin) is crucial to the current medical debate surrounding vitamin D and its potentially therapeutic properties;it would strongly support the role of vitamin D supplementation in obesity. This is particularly relevant since obesity and vitamin D deficiency are epidemics that occur in tandem, and are the focus of large-scale NIH funded prospective randomized trials. In this regard, the applicant's results could serve as an important physiologic mechanism to explain the results of these concurrent trials;an issue of high relevance for the NIH and NHLBI. The applicant has a long track-record of success in academic research, and extensive experience conducting human physiology studies investigating vitamin D, the RAS, and adiponectin biology in obesity. The NIH has awarded him the NIH F32 (NRSA) and Loan Repayment Awards for his related projects. His research and mentoring environment are strongly suited to successfully complete the proposed research, and he has assembled an experienced team of senior investigators to enhance his training plan and support his future endeavor of becoming an independent investigator.

Public Health Relevance

Obesity, excess adipose-tissue renin-angitoensin system (RAS) activity, and the deficiencies of vitamin D and adiponectin are all unfavorable metabolic profiles that aggregate in tandem, and are all associated with increased cardiovascular risk. The applicant's preliminary data support vitamin D therapy as a potential method to reduce adipose-tissue RAS activity and raise circulating adiponectin in obesity;thus, potentially reducing cardiovascular risk. This research plan proposes to conduct a prospective study to evaluate whether vitamin D therapy lowers adipose-tissue RAS activity and raises adiponectin in obese humans;this demonstration would be of major public health relevance, and in line with the missions of the NIH and NHLBI.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Mentored Patient-Oriented Research Career Development Award (K23)
Project #
1K23HL111771-01
Application #
8220178
Study Section
Special Emphasis Panel (ZHL1-CSR-X (O1))
Program Officer
Scott, Jane
Project Start
2012-05-07
Project End
2017-03-31
Budget Start
2012-05-07
Budget End
2013-03-31
Support Year
1
Fiscal Year
2012
Total Cost
$161,084
Indirect Cost
$11,932
Name
Brigham and Women's Hospital
Department
Type
DUNS #
030811269
City
Boston
State
MA
Country
United States
Zip Code
02115
Nanba, Kazutaka; Vaidya, Anand; Rainey, William E (2018) Aging and Adrenal Aldosterone Production. Hypertension 71:218-223
Zaheer, Sarah; Taquechel, Kiara; Brown, Jenifer M et al. (2018) A randomized intervention study to evaluate the effect of calcitriol therapy on the renin-angiotensin system in diabetes. J Renin Angiotensin Aldosterone Syst 19:1470320317754178
Hundemer, Gregory L; Baudrand, Rene; Brown, Jenifer M et al. (2017) Renin Phenotypes Characterize Vascular Disease, Autonomous Aldosteronism, and Mineralocorticoid Receptor Activity. J Clin Endocrinol Metab 102:1835-1843
Chen, Shuhua; Li, Weijuan; Jin, Cheng et al. (2017) Resting Heart Rate Trajectory Pattern Predicts Arterial Stiffness in a Community-Based Chinese Cohort. Arterioscler Thromb Vasc Biol 37:359-364
Vaidya, Anand; Curhan, Gary C; Paik, Julie M et al. (2017) Body Size and the Risk of Primary Hyperparathyroidism in Women: A Cohort Study. J Bone Miner Res 32:1900-1906
Prochaska, Megan; Taylor, Eric; Vaidya, Anand et al. (2017) Low Bone Density and Bisphosphonate Use and the Risk of Kidney Stones. Clin J Am Soc Nephrol 12:1284-1290
Baudrand, Rene; Guarda, Francisco J; Fardella, Carlos et al. (2017) Continuum of Renin-Independent Aldosteronism in Normotension. Hypertension 69:950-956
Ghosh, Pamela; Luque-Fernandez, Miguel A; Vaidya, Anand et al. (2017) Plasma Glycated CD59, a Novel Biomarker for Detection of Pregnancy-Induced Glucose Intolerance. Diabetes Care 40:981-984
Zaheer, Sarah; de Boer, Ian H; Allison, Matthew et al. (2017) Fibroblast Growth Factor 23, Mineral Metabolism, and Adiposity in Normal Kidney Function. J Clin Endocrinol Metab 102:1387-1395
Bayomy, Omar; Rao, Ajay D; Garg, Rajesh et al. (2017) Plasminogen Activator Inhibitor-1 and Pericardial Fat in Individuals with Type 2 Diabetes Mellitus. Metab Syndr Relat Disord 15:269-275

Showing the most recent 10 out of 55 publications