Pulmonary hypertension is a critical determinant of morbidity and mortality in various pediatric diseases. Despite advances in therapies, long-term outcomes in many settings remain poor. Although reasons for this are multi-factorial, one critical component is the relative lack of disease-defining knowledge regarding the functional impact of the disease on the right heart and coupled pulmonary vasculature. In fact, clinically, pulmonary arterial hypertension continues to be evaluated predominantly as a distal vascular phenomenon, and only limited recognition is given to the fact that the pulmonary arterial system (PA) is intimately coupled with right ventricular function in health and disease. Functionally speaking, RV-PA coupling is driven by the principles of hydrodynamic and mechanical energy transfer and is thus not markedly dependent on the biological heterogeneity of the pediatric PH population. Over the last 7 years, our group using a reverse "bedside-to-bench" approach have developed novel markers of RV afterload using vascular input impedance principles, and have shown on studies of over 250 pediatric subjects with pulmonary hypertension that PVR does not represent the sole metric of RV afterload, that PA stiffness increases dramatically in pediatric pulmonary hypertension patients and consequently loads the RV to a proportionally greater level, and that inclusion of impedance and PA stiffness measures improves prediction of 1-year outcomes. These clinical studies generated a series of mechanistic studies to understand how the upstream pulmonary vessels stiffen, which have led to novel and interesting hypotheses regarding the role of extracellular matrix proteins in upstream vascular remodeling, mechanisms of healthy versus maladaptive remodeling, and differences in the developing versus the fully developed RV-PA system. These are currently being tested by our group and others through parallel efforts. This K24 project proposes a unique combination of research studies and training efforts to advance clinical evaluation of PH while training clinical research fellows with both sold fundamental understanding of underlying physics and hemodynamics and accurate application of such principles to novel clinical diagnostics.

Public Health Relevance

Pulmonary hypertension (high blood pressure in the lungs) is a fatal disease in children. Although many treatments are being developed, methods to evaluate the disease clinically are still incomplete. In this grant, we will develop new non-invasive methods to comprehensively characterize this disease in children. We will also train the next generation of clinical investigators to better understand and diagnose this complex disease.

National Institute of Health (NIH)
Midcareer Investigator Award in Patient-Oriented Research (K24)
Project #
Application #
Study Section
Special Emphasis Panel (ZHL1)
Program Officer
Scott, Jane
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Colorado Denver
Biomedical Engineering
Schools of Medicine
United States
Zip Code
Yunker, Bryan E; Dodd, Gerald D; Chen, S James et al. (2014) The design and fabrication of two portal vein flow phantoms by different methods. Med Phys 41:023701
Brown, R Dale; Ambler, S Kelly; Li, Min et al. (2013) MAP kinase kinase kinase-2 (MEKK2) regulates hypertrophic remodeling of the right ventricle in hypoxia-induced pulmonary hypertension. Am J Physiol Heart Circ Physiol 304:H269-81
Colvin, Kelley L; Cripe, Patrick J; Ivy, D Dunbar et al. (2013) Bronchus-associated lymphoid tissue in pulmonary hypertension produces pathologic autoantibodies. Am J Respir Crit Care Med 188:1126-36
Kao, Philip H; Lammers, Steven R; Tian, Lian et al. (2011) A microstructurally driven model for pulmonary artery tissue. J Biomech Eng 133:051002
Tian, Lian; Lammers, Steven R; Kao, Philip H et al. (2011) Linked opening angle and histological and mechanical aspects of the proximal pulmonary arteries of healthy and pulmonary hypertensive rats and calves. Am J Physiol Heart Circ Physiol 301:H1810-8
Barker, Alex J; Lanning, Craig; Shandas, Robin (2010) Quantification of hemodynamic wall shear stress in patients with bicuspid aortic valve using phase-contrast MRI. Ann Biomed Eng 38:788-800
Tian, Lian; Hunter, Kendall S; Kirby, K Scott et al. (2010) Measurement uncertainty in pulmonary vascular input impedance and characteristic impedance estimated from pulsed-wave Doppler ultrasound and pressure: clinical studies on 57 pediatric patients. Physiol Meas 31:729-48
Hunter, Kendall S; Albietz, Joseph A; Lee, Po-Feng et al. (2010) In vivo measurement of proximal pulmonary artery elastic modulus in the neonatal calf model of pulmonary hypertension: development and ex vivo validation. J Appl Physiol 108:968-75
Nair, Devatha P; Cramer, Neil B; Scott, Timothy F et al. (2010) Photopolymerized Thiol-Ene Systems as Shape Memory Polymers. Polymer (Guildf) 51:4383-4389
Liu, Jessica; Oakley, Clyde; Shandas, Robin (2009) Capacitive micromachined ultrasonic transducers using commercial multi-user MUMPs process: capability and limitations. Ultrasonics 49:765-73

Showing the most recent 10 out of 15 publications