In this renewal of his mid-career investigator award in patient oriented-research, the candidate, Dr. Seward Rutkove, proposes to develop his mentoring efforts with young investigators in neurological research while continuing the pursuit of his long-term career goal of improving neuromuscular diagnostic techniques. Dr. Rutkove plans to mentor two specific groups of individuals, as he has been doing devotedly since his first K24 was funded in 2008. The first group of individuals consists of junior neurology faculty members, most of who work outside of Dr. Rutkove's subspecialty of neuromuscular disease. For these individuals, he will continue to hold regular, one-on-one meetings and will continue to organize a faculty seminar series to help share and generate research ideas. In addition, he will expand a 3X/year grant review and discussion meeting in which investigators, both junior and more senior, can examine individual researcher's specific aims and research ideas in an open forum. The second group of mentees generally consists of residents and fellows whose long- term goal is to become a successful patient-oriented researcher in neuromuscular disease, but who have not yet identified a specific area of research. For these individuals, Dr. Rutkove will take a more """"""""hands-on"""""""" approach with regular one-on-one meetings and detailed guidance in identifying potential areas of research. It is also this group of individuals who will benefit most directly from Dr. Rutkove's proposed K-24-supported research in quantitative diagnostic ultrasound techniques for the evaluation of neuromuscular disease, since this area offers broad opportunities for new research directions and opportunities. Specifically, Dr. Rutkove's proposed research plan focuses on the development of a variety of innovative ultrasound-based tools for the assessment of muscle, including automated signal decomposition of the backscattered radiofrequency data, computer-assisted image segmentation, and volumetric, electrographic, anisotropic, and entropy-based analyses. These techniques will be applied to a broad group of adult subjects with neuromuscular disease, providing ample opportunity for mentees to both participate directly in patient-oriented research and to identify areas of research interest of ther own. The environment supporting this work is rich and includes the resources at the Department of Neurology at Harvard Medical School/Beth Israel Deaconess Medical Center, where Dr. Rutkove is based. In addition to these mentoring and research activities, during the funding period, Dr. Rutkove also plans on writing and publishing a guide for researchers interested in establishing a career in patient-oriented research, through Springer publishing. At the conclusion of the research period, Dr. Rutkove expects to have advanced the area of clinical neuromuscular disease research while helping launch the successful careers of a new set of clinical investigators.

Public Health Relevance

In this renewal of his mid-career investigator award in patient oriented-research, the candidate, Dr. Seward Rutkove, proposes to expand his mentoring efforts with young investigators in neurological research while refining the techniques of the diagnostic ultrasound for use in the assessment of neuromuscular disease. At the conclusion of the funding period, Dr. Rutkove plans to have helped launch the careers of a new group of clinical investigators while substantially advancing an important new diagnostic modality for use in the care of patients with neuromuscular disease.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Midcareer Investigator Award in Patient-Oriented Research (K24)
Project #
Application #
Study Section
Neurological Sciences Training Initial Review Group (NST)
Program Officer
Gwinn, Katrina
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Beth Israel Deaconess Medical Center
United States
Zip Code
Rutkove, Seward B; Pacheck, Adam; Sanchez, Benjamin (2017) Sensitivity distribution simulations of surface electrode configurations for electrical impedance myography. Muscle Nerve 56:887-895
Sanchez, Benjamin; Rutkove, Seward B (2017) Electrical Impedance Myography and Its Applications in Neuromuscular Disorders. Neurotherapeutics 14:107-118
Koppaka, Sisir; Shklyar, Irina; Rutkove, Seward B et al. (2016) Quantitative Ultrasound Assessment of Duchenne Muscular Dystrophy Using Edge Detection Analysis. J Ultrasound Med 35:1889-97
Narayanaswami, Pushpa; Geisbush, Thomas; Jones, Lyell et al. (2016) Critically re-evaluating a common technique: Accuracy, reliability, and confirmation bias of EMG. Neurology 86:218-23
Pacheck, Adam; Mijailovic, Alex; Yim, Sung et al. (2016) Tongue electrical impedance in amyotrophic lateral sclerosis modeled using the finite element method. Clin Neurophysiol 127:1886-90
Sanchez, Benjamin; Pacheck, Adam; Rutkove, Seward B (2016) Guidelines to electrode positioning for human and animal electrical impedance myography research. Sci Rep 6:32615
McIlduff, Courtney; Yim, Sung; Pacheck, Adam et al. (2016) An improved electrical impedance myography (EIM) tongue array for use in clinical trials. Clin Neurophysiol 127:932-935
Rutkove, Seward B (2015) Clinical Measures of Disease Progression in Amyotrophic Lateral Sclerosis. Neurotherapeutics 12:384-93
Sung, Minhee; Spieker, Andrew J; Narayanaswami, Pushpa et al. (2013) The effect of subcutaneous fat on electrical impedance myography when using a handheld electrode array: the case for measuring reactance. Clin Neurophysiol 124:400-4
Kortman, Hans G J; Wilder, Sarah C; Geisbush, Tom R et al. (2013) Age- and gender-associated differences in electrical impedance values of skeletal muscle. Physiol Meas 34:1611-22

Showing the most recent 10 out of 21 publications