? Macrophages (MP) have been demonstrated to infiltrate adipose tissue at the onset of obesity and are one of the primary components contributing to and perpetuating obesity, but the phenotype and metabolic status of MPs in adipose remains unknown. In fat tissue MPs accumulate lipids as obesity increases similar to the formation of MPs into cholesterol-laden foam cells in an atherosclerotic lesion, where MPs are known to play a similar central role in the formation of plaques. Through metabolomic profiling, my current research and work from our group has shown that obesity imposes a persistent lipid burden on muscle mitochondria, resulting in a mismatch between (-oxidation and tricarboxylic acid cycle (TCA) cycle activity. This disconnect results in incomplete fatty acid (FA) (-oxidation which impairs muscle insulin sensitivity and glucose metabolism. Although strong links between obesity and inflammation exist, little is known about the role of mitochondrial metabolism in MP biology and whether MPs in obese adipose tissue are in a similar state of mitochondrial dysregulation. The current application addresses this critical gap by investigating FA-induced alterations in (-oxidation and mitochondrial function in MPs. It is my central hypothesis that perturbations in MP mitochondrial function drive local and/or systemic inflammatory responses in obesity. Specifically, MP lipid burden likely results in incomplete (-oxidation and mitochondrial stress, which in turn promotes inflammation and obesity. I plan to test the central hypothesis and address the overall objective of this application in MP cell lines, primary MPs, and in obese mouse models after bone marrow transplantation to determine the contribution of MP-specific gene expression in adipose tissue in these aims. 1: Lipid Loading of MPs Results in Dysregulated Mitochondrial Oxidation of Fatty Acids. 2: Mitochondrial Processing of FAs is Necessary to Drive the MP Inflammatory Response. 3: Decreasing MP Lipid Uptake in vivo Will Blunt the Formation of Local Inflammatory Signals and Obesity. My long term goal is to become a researcher focusing on the pathogenesis of obesity at the crossroads of inflammation and lipid metabolism. Clarifying the role of FA metabolism in the MP is important because the elaboration of the inflammatory response driven by MPs is essential to the formation of obesity. The outcomes of this project will have a dramatic impact on the field of obesity research because little is known about mitochondrial metabolism in the MP. ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute on Alcohol Abuse and Alcoholism (NIAAA)
Type
Career Transition Award (K99)
Project #
1K99AA017376-01
Application #
7249908
Study Section
Diabetes, Endocrinology and Metabolic Diseases B Subcommittee (DDK)
Program Officer
Gao, Peter
Project Start
2007-08-01
Project End
2009-07-31
Budget Start
2007-08-01
Budget End
2008-07-31
Support Year
1
Fiscal Year
2007
Total Cost
$79,497
Indirect Cost
Name
Duke University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Johnson, Amy R; Qin, Yuanyuan; Cozzo, Alyssa J et al. (2016) Metabolic reprogramming through fatty acid transport protein 1 (FATP1) regulates macrophage inflammatory potential and adipose inflammation. Mol Metab 5:506-526
Johnson, Amy R; Wilkerson, Matthew D; Sampey, Brante P et al. (2016) Cafeteria diet-induced obesity causes oxidative damage in white adipose. Biochem Biophys Res Commun 473:545-50
Johnson, Amy R; Makowski, Liza (2015) Nutrition and metabolic correlates of obesity and inflammation: clinical considerations. J Nutr 145:1131S-1136S
Sundaram, Sneha; Freemerman, Alex J; Galanko, Joseph A et al. (2014) Obesity-mediated regulation of HGF/c-Met is associated with reduced basal-like breast cancer latency in parous mice. PLoS One 9:e111394
Freemerman, Alex J; Johnson, Amy R; Sacks, Gina N et al. (2014) Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. J Biol Chem 289:7884-96
Schuck, Robert N; Zha, Weibin; Edin, Matthew L et al. (2014) The cytochrome P450 epoxygenase pathway regulates the hepatic inflammatory response in fatty liver disease. PLoS One 9:e110162
Qin, Yuanyuan; Hamilton, Jillian L; Bird, Melanie D et al. (2014) Adipose inflammation and macrophage infiltration after binge ethanol and burn injury. Alcohol Clin Exp Res 38:204-13
Brauer, Heather Ann; Makowski, Liza; Hoadley, Katherine A et al. (2013) Impact of tumor microenvironment and epithelial phenotypes on metabolism in breast cancer. Clin Cancer Res 19:571-85
Hu, Yin; Huang, Yan; Du, Ying et al. (2013) DiffSplice: the genome-wide detection of differential splicing events with RNA-seq. Nucleic Acids Res 41:e39
Bhatt, Aadra P; Jacobs, Sarah R; Freemerman, Alex J et al. (2012) Dysregulation of fatty acid synthesis and glycolysis in non-Hodgkin lymphoma. Proc Natl Acad Sci U S A 109:11818-23

Showing the most recent 10 out of 13 publications