Humans and other mammals are able to recognize and discriminate sounds even when masked by substantial irrelevant noise. Although this process is often effortless for animals, common sources of environmental noise severely confound automatic speech processors and distort the output of hearing aids and prosthetics. Understanding how complex noisy sounds are processed in central brain areas can provide critical insights into how to address these ongoing challenges. The goal of this project is to study cortical responses to naturalistic noisy auditory stimuli in order to understand neurophysiological mechanisms for the robust perception of noisy signals. Initial experiments will study automatic enhancement of natural signals in neural representations during passive listening. These experiments will focus specifically on environmental noise that challenges engineered auditory processing systems. Further experiments will study how neuronal mechanisms facilitate this process when selective attention is directed to auditory and multisensory audio-visual features. Computational analysis will be used to understand the algorithms employed by single neurons and neural populations to enhance the representation of important signals. In addition to revealing basic neural mechanisms of sensory processing, these experiments will provide insight into how sound processors can be improved for hearing-impaired patients. The benefits of hearing aids and prosthetics are often limited by common environmental noise, which can severely distort their outputs. In contrast, normal-hearing humans and other mammals are exquisitely adept at recognizing complex sounds, even in very noisy conditions. We propose to study how the brain processes noisy sounds in order to understand the neural mechanisms underlying this remarkable ability and to learn how sound processors might be improved for hearing-impaired patients.

Public Health Relevance

The benefits of hearing aids and prosthetics are often limited by common environmental noise, which can severely distort their outputs. In contrast, normal-hearing humans and other mammals are exquisitely adept at recognizing complex sounds, even in very noisy conditions. We propose to study how the brain processes noisy sounds in order to understand the neural mechanisms underlying this remarkable ability and to learn how sound processors might be improved for hearing-impaired patients.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Career Transition Award (K99)
Project #
5K99DC010439-02
Application #
8065469
Study Section
Communication Disorders Review Committee (CDRC)
Program Officer
Sklare, Dan
Project Start
2010-05-01
Project End
2012-04-30
Budget Start
2011-05-01
Budget End
2012-04-30
Support Year
2
Fiscal Year
2011
Total Cost
$89,100
Indirect Cost
Name
University of Maryland College Park
Department
Miscellaneous
Type
Schools of Engineering
DUNS #
790934285
City
College Park
State
MD
Country
United States
Zip Code
20742
Slee, Sean J; David, Stephen V (2015) Rapid Task-Related Plasticity of Spectrotemporal Receptive Fields in the Auditory Midbrain. J Neurosci 35:13090-102
Pasley, Brian N; David, Stephen V; Mesgarani, Nima et al. (2012) Reconstructing speech from human auditory cortex. PLoS Biol 10:e1001251
Stevenson, Ian H; London, Brian M; Oby, Emily R et al. (2012) Functional connectivity and tuning curves in populations of simultaneously recorded neurons. PLoS Comput Biol 8:e1002775
David, Stephen V; Fritz, Jonathan B; Shamma, Shihab A (2012) Task reward structure shapes rapid receptive field plasticity in auditory cortex. Proc Natl Acad Sci U S A 109:2144-9
Klampfl, Stefan; David, Stephen V; Yin, Pingbo et al. (2012) A quantitative analysis of information about past and present stimuli encoded by spikes of A1 neurons. J Neurophysiol 108:1366-80
Schinkel-Bielefeld, Nadja; David, Stephen V; Shamma, Shihab A et al. (2012) Inferring the role of inhibition in auditory processing of complex natural stimuli. J Neurophysiol 107:3296-307
Mesgarani, Nima; David, Stephen V; Fritz, Jonathan B et al. (2009) Influence of context and behavior on stimulus reconstruction from neural activity in primary auditory cortex. J Neurophysiol 102:3329-39