Every cell division requires the faithful duplication of genetic material from mother cell to daughter cell. Defects in the proper execution of the DNA replication program can directly result in the genome instability that is a hallmark of nearly all cancer cells. Proper genome duplication requires the delicate balance of the initiation and elongation phases of DNA replication. In fact, it has recently been demonstrated that the breakdown of replication forks within large genomic regions incapable of initiating DNA replication is responsible for the generation of chromosomal fragile sites, or sites in the genome susceptible to breakage. Our recent work in Drosophila has identified regions of the genome that are selectively repressed for DNA replication in a tissue-specific manner, providing a framework to understand the causes of tissue-specific genome instability. Furthermore, this repression is due to inhibition of replication fork progression through regions of the genome that are unable to initiate DNA replication. A single chromatin protein has been shown to mediate this tissue-specific repression, emphasizing the effect of chromatin structure on replication fork progression and stability. Therefore, we have now established a model system to understand how developmental changes in the DNA replication program ultimately affect genome stability and lead to chromosome fragile sites. Thus, the major goals of this proposal are to understand how chromatin structure influences replication fork progression and stability, and to identify components of active replication forks that mediate their progression through diverse chromatin structures.

Public Health Relevance

Within the cell, DNA is packaged together with proteins in order to fit almost three meters of DNA into the nucleus of a single cell. But, this DNA-protein complex, termed chromatin, presents challenges to the proteins that must copy DNA. Using the fruit fly Drosophila melanogaster as a model organism, our goal is to understand how the structure of chromatin influences the process of genome duplication and ultimately, how this can lead to changes in gene copy number seen in cancer cells.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Career Transition Award (K99)
Project #
Application #
Study Section
Special Emphasis Panel (ZGM1)
Program Officer
Sesma, Michael A
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Whitehead Institute for Biomedical Research
United States
Zip Code
Nordman, Jared T; Orr-Weaver, Terry L (2015) Understanding replication fork progression, stability, and chromosome fragility by exploiting the Suppressor of Underreplication protein. Bioessays 37:856-61
Nordman, Jared T; Kozhevnikova, Elena N; Verrijzer, C Peter et al. (2014) DNA copy-number control through inhibition of replication fork progression. Cell Rep 9:841-9