Several lines of evidence suggest that epidermal growth factor receptor (EGFR) signaling may play an evolutionarily conserved and important role in regulating sleep. Invertebrate genetic studies have demonstrated that EGFR signaling is required for sleep. Vertebrate studies, however, have been inconclusive. To address this, I found that EGFR signaling is both necessary and sufficient to promote sleep in zebrafish, a diurnal vertebrate. Furthermore, I identified effectors of EGFR-regulated sleep in worms and zebrafish. However, several fundamental questions remain regarding how EGFR regulates sleep at the molecular and neuronal levels, what factors mediate EGFR-driven sleep, and in what contexts EGFR is required for sleep. The objectives of this proposal seek to answer these particular questions. Zebrafish are well suited to address these questions because they exhibit behavioral, anatomical, genetic and pharmacological conservation of mammalian sleep, and unlike nocturnal rodents that are commonly used for sleep research, zebrafish are diurnal like humans. The optical transparency and relatively simple vertebrate brain of zebrafish larvae facilitate noninvasive studies of neuronal function in intact animals. The small size of zebrafish larvae allows for large-scale sleep/wake behavioral assays that generate statistically robust data and enable rapid testing of many genetic perturbations on behavior. We will exploit these advantageous features to further explore the EGFR-mediated sleep regulation.
In Specific Aim 1, we will test the hypothesis that egfr-expressing neurons are necessary and sufficient to promote sleep. We will use high-throughput optogenetic and chemical-genetic assays to stimulate, inhibit and ablate these neurons noninvasively in freely behaving zebrafish larvae.
In Specific Aim 2, I will test the hypothesis that cellular stress-induced sleep in zebrafish requires EGFR signaling and egfr-expressing neurons by stimulating, inhibiting and ablating them using optogenetic and chemogenetic approaches.
In Specific Aim 3, we will test the hypothesis that EGFR signaling promotes sleep by inducing the secretion of CSF sleep promoting factors by activating EGFR signaling, then extracting CSF and characterizing potential sleep promoting CSF factors using mass spectrometry. During the R00 phase, I will perform gain- and loss-of-function genetic studies of CSF candidate sleep-promoting factors to determine whether they are necessary and sufficient to promote sleep in zebrafish. These experiments may reveal novel genetic and neurological mechanisms through which EGFR regulates sleep. Investigating these questions is important because mutated EGFR signaling components are implicated in several human disorders, including disrupted rest-activity rhythms. By investigating this poorly understood sleep regulatory pathway and identifying new mechanism, this project may eventually lead to new therapies for sleep disorders. Because abnormal sleep is associated with several neurological disorders, including depression, schizophrenia and autism, and may be causal in some cases, this project may also lead to improved therapies for some neurological disorders.

Public Health Relevance

More than 30 million Americans suffer from chronic sleep disorders, but the causes of most of these disorders are unknown and effective therapies are lacking. We recently identified an evolutionarily conserved signaling pathway that is required for sleep-like behavior in zebrafish. We will now characterize the genetic and neurological mechanisms through which this signaling pathway and the neurons that produce it regulate sleep using zebrafish larvae as a simple diurnal vertebrate animal model.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Career Transition Award (K99)
Project #
1K99NS097683-01
Application #
9165100
Study Section
NST-2 Subcommittee (NST)
Program Officer
He, Janet
Project Start
2016-09-15
Project End
2018-08-31
Budget Start
2016-09-15
Budget End
2017-08-31
Support Year
1
Fiscal Year
2016
Total Cost
Indirect Cost
Name
California Institute of Technology
Department
Type
Schools of Arts and Sciences
DUNS #
009584210
City
Pasadena
State
CA
Country
United States
Zip Code
91125
Lee, Daniel A; Andreev, Andrey; Truong, Thai V et al. (2017) Genetic and neuronal regulation of sleep by neuropeptide VF. Elife 6: