The major goal of this P01 is to leverage institutional strengths in human, non-human primate, and rodent alcohol research to conduct translational studies directed at understanding the complex relationships between early life stress and vulnerability to alcohol use disorders. This project will take advantage of a highly productive and successful translational alcohol research unit at WFHS that was recently established with NIAAA programmatic grant support. This research unit will employ multidisciplinary approaches to identify enduring behavioral and neurobiological consequences of early life stress, determine how these alterations contribute to excessive alcohol drinking behaviors, and test novel interventional strategies that may be effective at alleviating addiction vulnerability associated with early life stress. The overarching hypothesis is that early life stress results in long lastin behavioral alterations that contribute to an increased risk of alcohol addiction (with a focus on anxiety-like behaviors). It is also hypothesized that these behavioral alterations are mediated, in part, by dysregulatlon of dopamine signaling and glutamate receptor function and plasticity in the nucleus accumbens. Aspects of these hypotheses will be evaluated in human subjects with and without a history of early life stress and with well-established non-human primate and rodent models of early life stress. This P01 will employ a Center-like structure that will include highly integrated rodent, non-human primate, and human projects. An administrative core will provide the infrastructure and support needed to ensure the success of the research. This core will also actively promote new translational alcohol research through a pilot project program and create new translational research training and outreach activities related to the scientific goals f the P01. A major emphasis will be to promote scientific integration across projects to maximize the likelihood of proceeding from benchside discovery to novel treatment strategies for alcohol addiction.

Public Health Relevance

The proposed studies outline a multidisciplinary, translational research initiative that will bring together human, non-human primate, and rodent alcohol researchers to address complex and unresolved questions regarding the neurobiological mechanisms that link early life stress and alcohol addiction. These translational studies will shed new light on important behavioral phenotypes associated with early environmental stress, their association with excessive alcohol drinking, and specific neurobiological mechanisms that may underlie these relationships. This project will also explore novel interventional strategies that may mitigate the increased addiction vulnerability associated with early-life stress.

National Institute of Health (NIH)
National Institute on Alcohol Abuse and Alcoholism (NIAAA)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAA1-GG (21))
Program Officer
Grandison, Lindsey
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Wake Forest University Health Sciences
Schools of Medicine
United States
Zip Code
Almonte, Antoine G; Ewin, Sarah E; Mauterer, Madelyn I et al. (2017) Enhanced ventral hippocampal synaptic transmission and impaired synaptic plasticity in a rodent model of alcohol addiction vulnerability. Sci Rep 7:12300
Skelly, M J; Ariwodola, O J; Weiner, J L (2017) Fear conditioning selectively disrupts noradrenergic facilitation of GABAergic inhibition in the basolateral amygdala. Neuropharmacology 113:231-240
Siciliano, Cody A; Locke, Jason L; Mathews, Tiffany A et al. (2017) Dopamine synthesis in alcohol drinking-prone and -resistant mouse strains. Alcohol 58:25-32
Gilpin, N W; Weiner, J L (2017) Neurobiology of comorbid post-traumatic stress disorder and alcohol-use disorder. Genes Brain Behav 16:15-43
Fordahl, Steve C; Jones, Sara R (2017) High-Fat-Diet-Induced Deficits in Dopamine Terminal Function Are Reversed by Restoring Insulin Signaling. ACS Chem Neurosci 8:290-299
John, William S; Nader, Michael A (2017) Effects of ethanol on cocaine self-administration in monkeys responding under a second-order schedule of reinforcement. Drug Alcohol Depend 170:112-119
Melchior, James R; Jones, Sara R (2017) Chronic ethanol exposure increases inhibition of optically targeted phasic dopamine release in the nucleus accumbens core and medial shell ex vivo. Mol Cell Neurosci 85:93-104
Siciliano, Cody A; Calipari, Erin S; Yorgason, Jordan T et al. (2016) Chronic ethanol self-administration in macaques shifts dopamine feedback inhibition to predominantly D2 receptors in nucleus accumbens core. Drug Alcohol Depend 158:159-63
Siciliano, Cody A; Calipari, Erin S; Yorgason, Jordan T et al. (2016) Increased presynaptic regulation of dopamine neurotransmission in the nucleus accumbens core following chronic ethanol self-administration in female macaques. Psychopharmacology (Berl) 233:1435-43
Skelly, M J; Chappell, A M; Ariwodola, O J et al. (2016) Behavioral and neurophysiological evidence that lateral paracapsular GABAergic synapses in the basolateral amygdala contribute to the acquisition and extinction of fear learning. Neurobiol Learn Mem 127:10-6

Showing the most recent 10 out of 57 publications