Core A: Administrative Core this Program Project is broadly focused on understanding the mechanisms by which inflammation modulates AD pathogenesis. An additional goal of this Program is to investigate how proteins recently identifled by Genome Wide Association Studies (GWAS) in Alzheimer disease (AD) contribute to endocytic dysfunction, which may trigger the inflammatory cascade, impair synaptic plasticity, disrupt the clearance of toxic proteins, and thereby increase AD risk. The Administrative Core oversees the activities of the Program Project and provides infrastructure support for Program Project investigators to facilitate the goals of the Program Project. The Administrative Core nurtures and promotes a multi-disciplinary, multi-investigator approach by coordinating and facilitating communication between the Cores and the Projects. The Core will organize bi-monthly meetings, a weekly seminar series that incorporates the themes of the current Program Project, and engage other AD-related programs at UCI and the Alzheimer's Disease Research Centers of Orange, Los Angeles and San Diego Counties to foster collaborations with Program Project investigators. The Core will annually assemble an External Advisory Committee to review research progress and provide guidance for the Program Project investigators. The Core will also monitor the Tissue, Peptide, and Genetics Core, as well as oversee availability and access to the UCI Alzheimer Disease Research Center (ADRC) database that encompasses clinical, neuropathological, neuroanatomical, biochemical, and genetic data from subjects (active and deceased) participating in the UCI ADRC (control and AD). Lastly, the Administrative Core coordinates the use of shared facilities, services, equipment and supplies by all Program Project investigators, assists in material transfer agreements, oversees animal use and IRB protocols and manages the financial budgets of the Cores and the projects.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
2P01AG000538-34A1
Application #
8705148
Study Section
Special Emphasis Panel (ZAG1)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-03-31
Support Year
34
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of California Irvine
Department
Type
DUNS #
City
Irvine
State
CA
Country
United States
Zip Code
92697
Sosna, Justyna; Philipp, Stephan; Albay 3rd, Ricardo et al. (2018) Early long-term administration of the CSF1R inhibitor PLX3397 ablates microglia and reduces accumulation of intraneuronal amyloid, neuritic plaque deposition and pre-fibrillar oligomers in 5XFAD mouse model of Alzheimer's disease. Mol Neurodegener 13:11
Tong, Liqi; Prieto, G Aleph; Cotman, Carl W (2018) IL-1? suppresses cLTP-induced surface expression of GluA1 and actin polymerization via ceramide-mediated Src activation. J Neuroinflammation 15:127
Hainsworth, A H; Lee, S; Foot, P et al. (2018) Super-resolution imaging of subcortical white matter using stochastic optical reconstruction microscopy (STORM) and super-resolution optical fluctuation imaging (SOFI). Neuropathol Appl Neurobiol 44:417-426
Krotee, Pascal; Griner, Sarah L; Sawaya, Michael R et al. (2018) Common fibrillar spines of amyloid-? and human islet amyloid polypeptide revealed by microelectron diffraction and structure-based inhibitors. J Biol Chem 293:2888-2902
Prieto, G Aleph; Tong, Liqi; Smith, Erica D et al. (2018) TNF? and IL-1? but not IL-18 Suppresses Hippocampal Long-Term Potentiation Directly at the Synapse. Neurochem Res :
Prieto, G Aleph; Cotman, Carl W (2017) On the road towards the global analysis of human synapses. Neural Regen Res 12:1586-1589
Chen, E Y; Chu, S; Gov, L et al. (2017) CD200 modulates macrophage cytokine secretion and phagocytosis in response to poly(lactic co-glycolic acid) microparticles and films. J Mater Chem B 5:1574-1584
Snigdha, Shikha; Yassa, Michael A; deRivera, Christina et al. (2017) Pattern separation and goal-directed behavior in the aged canine. Learn Mem 24:123-131
Hernandez, Michael X; Namiranian, Pouya; Nguyen, Eric et al. (2017) C5a Increases the Injury to Primary Neurons Elicited by Fibrillar Amyloid Beta. ASN Neuro 9:1759091416687871
Hatami, Asa; Monjazeb, Sanaz; Milton, Saskia et al. (2017) Familial Alzheimer's Disease Mutations within the Amyloid Precursor Protein Alter the Aggregation and Conformation of the Amyloid-? Peptide. J Biol Chem 292:3172-3185

Showing the most recent 10 out of 281 publications