We are addressing the quesfion of whether age-associated oncogenesis, and more specifically, tumor progression, is associated with mitochondrial (mt) ROS. We hypothesize that age-associated cancers are driven by increasing levels of mitochondrial-mediated ROS. Our preliminary data suggests that ROS is associated with tumor progression, and provides the rafionale for three specific aims to better understand the mechanisms whereby protection of mitochondria reduces oncogenesis.
Aim 1 is designed to determine what cellular processes are involved in the mCAT suppression of metastatic tumor progression in the lungs of young and old mice, primary skin tumor progression in young and old mice. We will use primary skin tumor and pulmonary metastatic mammary tumor models in the presence and absence of mitochondrial-targeted catalase (mCAT) to analyze neoplastic progression and tumor metastasis. We will compare the host response and the protecfive effects of mCAT in young and old mice.
Aim 2 is designed to determine the contribution of specific cell types in the mCAT suppression of tumor progression. There is increasing evidence that the microenvironment plays a crifical role in oncogeneis. Our preliminary results showing attenuation of tumor progression via expression of mCAT could be explained, in part, by mCAT expression within specific cell types within the microenvironment of the neoplastic cells. We will therefore assess the roles of mCAT expression in several different stromal cell types and compare their putative suppressive effects with epithelial cells (both neoplastic and non-neoplastic) that express mCAT. Specific mCAT expression will be driven by cell-specific Cre transgenesis.
Aim 3 is designed to evaluate the efficacy of mitochondrial antioxidant and protective drugs for intervention in tumor progression and metastasis. We will correlate the differences in modes of acfion of the drugs with differences in effects on tumor progression, cell proliferafion and survival in order to better understand the mechanisms whereby protection of mitochondria reduces neoplasia and enhances an anti-aging phenotype. The experimental approach is designed to determine if specific mitochondrial targeted anfioxidant mimefics are effective in suppressing tumor progression in young and old animals with cancer or in aged wild type mice that develop multiple tumor types.

Public Health Relevance

(See Instmctions): Project 3 is designed to determine if specific mitochondrial targeted antioxidants can provide a means of prevenfing tumor progression and metastasis associated with age-related increase in ROS. PROJECT/PERFORH/lANCE SITE(S) (if additional space is needed, use Project/Performance

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
5P01AG001751-29
Application #
8378126
Study Section
Special Emphasis Panel (ZAG1-ZIJ-6)
Project Start
Project End
Budget Start
2012-03-01
Budget End
2013-02-28
Support Year
29
Fiscal Year
2012
Total Cost
$298,498
Indirect Cost
$101,916
Name
University of Washington
Department
Type
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Basisty, Nathan B; Liu, Yuxin; Reynolds, Jason et al. (2018) Stable Isotope Labeling Reveals Novel Insights Into Ubiquitin-Mediated Protein Aggregation With Age, Calorie Restriction, and Rapamycin Treatment. J Gerontol A Biol Sci Med Sci 73:561-570
Kramer, Philip A; Duan, Jicheng; Gaffrey, Matthew J et al. (2018) Fatiguing contractions increase protein S-glutathionylation occupancy in mouse skeletal muscle. Redox Biol 17:367-376
Zhang, Huiliang; Gong, Guohua; Wang, Pei et al. (2018) Heart specific knockout of Ndufs4 ameliorates ischemia reperfusion injury. J Mol Cell Cardiol 123:38-45
Ge, Xuan; Ciol, Marcia A; Pettan-Brewer, Christina et al. (2017) Self-motivated and stress-response performance assays in mice are age-dependent. Exp Gerontol 91:1-4
Sweetwyne, Mariya T; Pippin, Jeffrey W; Eng, Diana G et al. (2017) The mitochondrial-targeted peptide, SS-31, improves glomerular architecture in mice of advanced age. Kidney Int 91:1126-1145
Liu, Sophia Z; Marcinek, David J (2017) Skeletal muscle bioenergetics in aging and heart failure. Heart Fail Rev 22:167-178
Kruse, Shane E; Karunadharma, Pabalu P; Basisty, Nathan et al. (2016) Age modifies respiratory complex I and protein homeostasis in a muscle type-specific manner. Aging Cell 15:89-99
Loeb, Lawrence A (2016) Human Cancers Express a Mutator Phenotype: Hypothesis, Origin, and Consequences. Cancer Res 76:2057-9
Chiao, Ying Ann; Kolwicz, Stephen C; Basisty, Nathan et al. (2016) Rapamycin transiently induces mitochondrial remodeling to reprogram energy metabolism in old hearts. Aging (Albany NY) 8:314-27
Campbell, Matthew D; Marcinek, David J (2016) Evaluation of in vivo mitochondrial bioenergetics in skeletal muscle using NMR and optical methods. Biochim Biophys Acta 1862:716-724

Showing the most recent 10 out of 285 publications