Core B will provide mouse model resources, including extensive breeding, colony management and record keeping, intensive monitoring of mice on experimental and lifespan studies, and physiological and pathological assessment. The need for an animal core is paramount in that all projects use mice in a focused manner. Consolidation of animal resources focused on maximizing efficiency and minimizing costs is essential to the success of this program project. The Mouse Core is central to the programmatic efforts of the investigators.
Specific aim 1 is designed to maintain mouse lines relevant for the program project and generate stock mice for experimental procedures for research projects.
Specific aim 2 will provide the resources to conduct physiological and pathological studies in mouse lines relevant to specific research project aims and objectives. These will include a special focus on the physiological and pathological assessment of cardiovascular, skeletal muscle, behavioral and cancer phenotypes.

Public Health Relevance

The need for an animal core is paramount in that all 4 projects propose to use mice. Consolidation of animal resources focused on maximizing efficiency and minimizing costs is essential to the success of this program project. The Animal Core is central to the programmatic efforts of the investigators.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
5P01AG001751-31
Application #
8643178
Study Section
Special Emphasis Panel (ZAG1-ZIJ-6)
Project Start
Project End
Budget Start
2014-03-01
Budget End
2015-02-28
Support Year
31
Fiscal Year
2014
Total Cost
$303,822
Indirect Cost
$107,173
Name
University of Washington
Department
Type
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Liu, Sophia Z; Marcinek, David J (2017) Skeletal muscle bioenergetics in aging and heart failure. Heart Fail Rev 22:167-178
Ge, Xuan; Ciol, Marcia A; Pettan-Brewer, Christina et al. (2017) Self-motivated and stress-response performance assays in mice are age-dependent. Exp Gerontol 91:1-4
Sweetwyne, Mariya T; Pippin, Jeffrey W; Eng, Diana G et al. (2017) The mitochondrial-targeted peptide, SS-31, improves glomerular architecture in mice of advanced age. Kidney Int 91:1126-1145
Treuting, P M; Snyder, J M; Ikeno, Y et al. (2016) The Vital Role of Pathology in Improving Reproducibility and Translational Relevance of Aging Studies in Rodents. Vet Pathol 53:244-9
Ahn, Eun Hyun; Lee, Seung Hyuk; Kim, Joon Yup et al. (2016) Decreased Mitochondrial Mutagenesis during Transformation of Human Breast Stem Cells into Tumorigenic Cells. Cancer Res 76:4569-78
Kruse, Shane E; Karunadharma, Pabalu P; Basisty, Nathan et al. (2016) Age modifies respiratory complex I and protein homeostasis in a muscle type-specific manner. Aging Cell 15:89-99
Basisty, Nathan; Dai, Dao-Fu; Gagnidze, Arni et al. (2016) Mitochondrial-targeted catalase is good for the old mouse proteome, but not for the young: 'reverse' antagonistic pleiotropy? Aging Cell 15:634-45
Campbell, Matthew D; Marcinek, David J (2016) Evaluation of in vivo mitochondrial bioenergetics in skeletal muscle using NMR and optical methods. Biochim Biophys Acta 1862:716-724
Loeb, Lawrence A (2016) Human Cancers Express a Mutator Phenotype: Hypothesis, Origin, and Consequences. Cancer Res 76:2057-9
Chiao, Ying Ann; Kolwicz, Stephen C; Basisty, Nathan et al. (2016) Rapamycin transiently induces mitochondrial remodeling to reprogram energy metabolism in old hearts. Aging (Albany NY) 8:314-27

Showing the most recent 10 out of 282 publications